On the arc-sine laws for Lévy processes

Let X be a Lévy process on the real line, and let Fc denote the generalized arcsine law on [0, 1] with parameter c. Then t −1 ⨍0 t P 0(X s > 0) ds → c as t → ∞ is a necessary and sufficient condition for t —1 ⨍0 t 1{Xs >0} ds to converge in P 0 law to Fc. Moreover, P 0(Xt > 0) = c for all t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1994-03, Vol.31 (1), p.76-89
Hauptverfasser: Getoor, R. K., Sharpe, M. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a Lévy process on the real line, and let Fc denote the generalized arcsine law on [0, 1] with parameter c. Then t −1 ⨍0 t P 0(X s > 0) ds → c as t → ∞ is a necessary and sufficient condition for t —1 ⨍0 t 1{Xs >0} ds to converge in P 0 law to Fc. Moreover, P 0(Xt > 0) = c for all t > 0 is a necessary and sufficient condition for t —1 ⨍0 t 1{Xs >0} ds under P 0 to have law Fc for all t > 0. We give an elementary proof of these results, and show how to derive Spitzer's theorem for random walks in a simple way from the Lévy process version.
ISSN:0021-9002
1475-6072
DOI:10.2307/3215236