On the arc-sine laws for Lévy processes
Let X be a Lévy process on the real line, and let Fc denote the generalized arcsine law on [0, 1] with parameter c. Then t −1 ⨍0 t P 0(X s > 0) ds → c as t → ∞ is a necessary and sufficient condition for t —1 ⨍0 t 1{Xs >0} ds to converge in P 0 law to Fc. Moreover, P 0(Xt > 0) = c for all t...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 1994-03, Vol.31 (1), p.76-89 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let X be a Lévy process on the real line, and let Fc
denote the generalized arcsine law on [0, 1] with parameter c. Then t
−1 ⨍0
t
P
0(X
s
> 0) ds → c as t → ∞ is a necessary and sufficient condition for t
—1 ⨍0
t
1{Xs
>0}
ds to converge in P
0 law to Fc. Moreover, P
0(Xt
> 0) = c for all t > 0 is a necessary and sufficient condition for t
—1 ⨍0
t
1{Xs
>0}
ds under P
0 to have law Fc
for all t > 0. We give an elementary proof of these results, and show how to derive Spitzer's theorem for random walks in a simple way from the Lévy process version. |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.2307/3215236 |