Optimal second-order product probability bounds

Let P(c) = P(X 1 ≦ c 1, · ··, Xp ≦ cp ) for a random vector (X 1, · ··, Xp ). Bounds are considered of the form where T is a spanning tree corresponding to the bivariate probability structure and di is the degree of the vertex i in T. An optimized version of this inequality is obtained. The main res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1993-09, Vol.30 (3), p.675-691
Hauptverfasser: Block, Henry W., Costigan, Timothy M., Sampson, Allan R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 691
container_issue 3
container_start_page 675
container_title Journal of applied probability
container_volume 30
creator Block, Henry W.
Costigan, Timothy M.
Sampson, Allan R.
description Let P(c) = P(X 1 ≦ c 1, · ··, Xp ≦ cp ) for a random vector (X 1, · ··, Xp ). Bounds are considered of the form where T is a spanning tree corresponding to the bivariate probability structure and di is the degree of the vertex i in T. An optimized version of this inequality is obtained. The main result is that alwayṡ dominates certain second-order Bonferroni bounds. Conditions on the covariance matrix of a N(0,Σ) distribution are given so that this bound applies, and various applications are given.
doi_str_mv 10.2307/3214774
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_234901204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_2307_3214774</cupid><jstor_id>3214774</jstor_id><sourcerecordid>3214774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-7140fa81d156baa6b2bc037e328ed7786a3f8aff1b3ac2a0f64ee64eb993f5403</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFbxLxQRxEXsnUcyyVJKfUChG12HOy9JSTN1Jln03zulwYILF_eezcc59x5Cbik8MQ5yzhkVUoozMkmaZwVIdk4mAIxmVdqX5CrGDQAVeSUnZL7e9c0W21m02ncm88HYMNsFbwbdH1Shatqm38-UHzoTr8mFwzbam1Gn5PNl-bF4y1br1_fF8yrTTIo-k1SAw5IamhcKsVBMaeDSclZaI2VZIHclOkcVR80QXCGsTaOqirtcAJ-Su6NvOuF7sLGvN34IXYqsGRcVUAYiQQ9HSAcfY7Cu3oX0TNjXFOpDGfVYRiLvRzuMGlsXsNNN_MV5Saks5AnbxN6Hf9wex1zcqtCYL3u67i_7A94NdP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234901204</pqid></control><display><type>article</type><title>Optimal second-order product probability bounds</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Block, Henry W. ; Costigan, Timothy M. ; Sampson, Allan R.</creator><creatorcontrib>Block, Henry W. ; Costigan, Timothy M. ; Sampson, Allan R.</creatorcontrib><description>Let P(c) = P(X 1 ≦ c 1, · ··, Xp ≦ cp ) for a random vector (X 1, · ··, Xp ). Bounds are considered of the form where T is a spanning tree corresponding to the bivariate probability structure and di is the degree of the vertex i in T. An optimized version of this inequality is obtained. The main result is that alwayṡ dominates certain second-order Bonferroni bounds. Conditions on the covariance matrix of a N(0,Σ) distribution are given so that this bound applies, and various applications are given.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.2307/3214774</identifier><identifier>CODEN: JPRBAM</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algorithms ; Applications ; Exact sciences and technology ; Mathematical models ; Mathematics ; Multivariate analysis ; Probability ; Probability and statistics ; Regression analysis ; Research Papers ; Sciences and techniques of general use ; Statistics ; Studies ; Theory</subject><ispartof>Journal of applied probability, 1993-09, Vol.30 (3), p.675-691</ispartof><rights>Copyright © Applied Probability Trust 1993</rights><rights>Copyright 1993 Applied Probability Trust</rights><rights>1994 INIST-CNRS</rights><rights>Copyright Applied Probability Trust Sep 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274t-7140fa81d156baa6b2bc037e328ed7786a3f8aff1b3ac2a0f64ee64eb993f5403</citedby><cites>FETCH-LOGICAL-c274t-7140fa81d156baa6b2bc037e328ed7786a3f8aff1b3ac2a0f64ee64eb993f5403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3214774$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3214774$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27923,27924,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3811767$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Block, Henry W.</creatorcontrib><creatorcontrib>Costigan, Timothy M.</creatorcontrib><creatorcontrib>Sampson, Allan R.</creatorcontrib><title>Optimal second-order product probability bounds</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>Let P(c) = P(X 1 ≦ c 1, · ··, Xp ≦ cp ) for a random vector (X 1, · ··, Xp ). Bounds are considered of the form where T is a spanning tree corresponding to the bivariate probability structure and di is the degree of the vertex i in T. An optimized version of this inequality is obtained. The main result is that alwayṡ dominates certain second-order Bonferroni bounds. Conditions on the covariance matrix of a N(0,Σ) distribution are given so that this bound applies, and various applications are given.</description><subject>Algorithms</subject><subject>Applications</subject><subject>Exact sciences and technology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Research Papers</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Studies</subject><subject>Theory</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFbxLxQRxEXsnUcyyVJKfUChG12HOy9JSTN1Jln03zulwYILF_eezcc59x5Cbik8MQ5yzhkVUoozMkmaZwVIdk4mAIxmVdqX5CrGDQAVeSUnZL7e9c0W21m02ncm88HYMNsFbwbdH1Shatqm38-UHzoTr8mFwzbam1Gn5PNl-bF4y1br1_fF8yrTTIo-k1SAw5IamhcKsVBMaeDSclZaI2VZIHclOkcVR80QXCGsTaOqirtcAJ-Su6NvOuF7sLGvN34IXYqsGRcVUAYiQQ9HSAcfY7Cu3oX0TNjXFOpDGfVYRiLvRzuMGlsXsNNN_MV5Saks5AnbxN6Hf9wex1zcqtCYL3u67i_7A94NdP0</recordid><startdate>19930901</startdate><enddate>19930901</enddate><creator>Block, Henry W.</creator><creator>Costigan, Timothy M.</creator><creator>Sampson, Allan R.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19930901</creationdate><title>Optimal second-order product probability bounds</title><author>Block, Henry W. ; Costigan, Timothy M. ; Sampson, Allan R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-7140fa81d156baa6b2bc037e328ed7786a3f8aff1b3ac2a0f64ee64eb993f5403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algorithms</topic><topic>Applications</topic><topic>Exact sciences and technology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Research Papers</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Studies</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Block, Henry W.</creatorcontrib><creatorcontrib>Costigan, Timothy M.</creatorcontrib><creatorcontrib>Sampson, Allan R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Block, Henry W.</au><au>Costigan, Timothy M.</au><au>Sampson, Allan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal second-order product probability bounds</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>1993-09-01</date><risdate>1993</risdate><volume>30</volume><issue>3</issue><spage>675</spage><epage>691</epage><pages>675-691</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><coden>JPRBAM</coden><abstract>Let P(c) = P(X 1 ≦ c 1, · ··, Xp ≦ cp ) for a random vector (X 1, · ··, Xp ). Bounds are considered of the form where T is a spanning tree corresponding to the bivariate probability structure and di is the degree of the vertex i in T. An optimized version of this inequality is obtained. The main result is that alwayṡ dominates certain second-order Bonferroni bounds. Conditions on the covariance matrix of a N(0,Σ) distribution are given so that this bound applies, and various applications are given.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.2307/3214774</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 1993-09, Vol.30 (3), p.675-691
issn 0021-9002
1475-6072
language eng
recordid cdi_proquest_journals_234901204
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Algorithms
Applications
Exact sciences and technology
Mathematical models
Mathematics
Multivariate analysis
Probability
Probability and statistics
Regression analysis
Research Papers
Sciences and techniques of general use
Statistics
Studies
Theory
title Optimal second-order product probability bounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20second-order%20product%20probability%20bounds&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Block,%20Henry%20W.&rft.date=1993-09-01&rft.volume=30&rft.issue=3&rft.spage=675&rft.epage=691&rft.pages=675-691&rft.issn=0021-9002&rft.eissn=1475-6072&rft.coden=JPRBAM&rft_id=info:doi/10.2307/3214774&rft_dat=%3Cjstor_proqu%3E3214774%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234901204&rft_id=info:pmid/&rft_cupid=10_2307_3214774&rft_jstor_id=3214774&rfr_iscdi=true