Optimal second-order product probability bounds

Let P(c) = P(X 1 ≦ c 1, · ··, Xp ≦ cp ) for a random vector (X 1, · ··, Xp ). Bounds are considered of the form where T is a spanning tree corresponding to the bivariate probability structure and di is the degree of the vertex i in T. An optimized version of this inequality is obtained. The main res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1993-09, Vol.30 (3), p.675-691
Hauptverfasser: Block, Henry W., Costigan, Timothy M., Sampson, Allan R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let P(c) = P(X 1 ≦ c 1, · ··, Xp ≦ cp ) for a random vector (X 1, · ··, Xp ). Bounds are considered of the form where T is a spanning tree corresponding to the bivariate probability structure and di is the degree of the vertex i in T. An optimized version of this inequality is obtained. The main result is that alwayṡ dominates certain second-order Bonferroni bounds. Conditions on the covariance matrix of a N(0,Σ) distribution are given so that this bound applies, and various applications are given.
ISSN:0021-9002
1475-6072
DOI:10.2307/3214774