Optimal second-order product probability bounds
Let P(c) = P(X 1 ≦ c 1, · ··, Xp ≦ cp ) for a random vector (X 1, · ··, Xp ). Bounds are considered of the form where T is a spanning tree corresponding to the bivariate probability structure and di is the degree of the vertex i in T. An optimized version of this inequality is obtained. The main res...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 1993-09, Vol.30 (3), p.675-691 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let P(c) = P(X
1 ≦ c
1, · ··, Xp
≦ cp
) for a random vector (X
1, · ··, Xp
). Bounds are considered of the form
where T is a spanning tree corresponding to the bivariate probability structure and di
is the degree of the vertex i in T. An optimized version of this inequality is obtained. The main result is that alwayṡ dominates certain second-order Bonferroni bounds. Conditions on the covariance matrix of a N(0,Σ) distribution are given so that this bound applies, and various applications are given. |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.2307/3214774 |