Metamaterials and Cesàro convergence
In this paper, we show that the linear dielectrics and magnetic materials in matter obey a special kind of mathematical property known as Ces\`{a}ro convergence. Then, we also show that the analytical continuation of the linear permittivity \& permeability to a complex plane in terms of Riemann...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we show that the linear dielectrics and magnetic materials in matter obey a special kind of mathematical property known as Ces\`{a}ro convergence. Then, we also show that the analytical continuation of the linear permittivity \& permeability to a complex plane in terms of Riemann zeta function. The metamaterials are fabricated materials with a negative refractive index. These materials, in turn, depend on permittivity \& permeability of the linear dielectrics and magnetic materials. Therefore, the Ces\`{a}ro convergence property of the linear dielectrics and magnetic materials may be used to fabricate the metamaterials. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2001.10935 |