Numerical study of Risken–Nummedal–Graham–Haken instability in mid-infrared Fabry–Pérot quantum cascade lasers
We review our recent theoretical studies on multimode instabilities in Fabry–Pérot cavity mid-infrared quantum cascade lasers (QCLs) caused by parametric excitation of Rabi flopping oscillations. Numerical simulations are based on the semiclassical traveling wave Maxwell–Bloch equations. QCLs with a...
Gespeichert in:
Veröffentlicht in: | Optical and quantum electronics 2020-02, Vol.52 (2), Article 91 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We review our recent theoretical studies on multimode instabilities in Fabry–Pérot cavity mid-infrared quantum cascade lasers (QCLs) caused by parametric excitation of Rabi flopping oscillations. Numerical simulations are based on the semiclassical traveling wave Maxwell–Bloch equations. QCLs with a few mm cavity without an absorber exhibit intermittent RNGH self-pulsations, while regular self-pulsations are possible in short-cavity QCLs, with the cavity length of 100 μm or smaller. However, the second threshold in short-cavity QCLs is significantly increased compared to the values for a few mm long devices. We provide here a new insight on RNGH instability via bifurcation analysis of the output waveform and studies of the recurrence period density entropy. We propose an interpretation of the broadening/narrowing of the optical spectrum of a QCL i.e. switching the RNGH instability on and off observed in experiment. |
---|---|
ISSN: | 0306-8919 1572-817X |
DOI: | 10.1007/s11082-020-2210-4 |