Neural-network-based adaptive fault-tolerant vibration control of single-link flexible manipulator

This paper proposes an adaptive fault-tolerant control scheme for a single-link flexible manipulator with actuator failure and uncertain boundary disturbance. The dynamic model of the flexible manipulator as-described by partial differential equations (PDEs) is derived under Hamilton’s principle. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2020-02, Vol.42 (3), p.430-438
Hauptverfasser: Li, Le, Liu, Jinkun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes an adaptive fault-tolerant control scheme for a single-link flexible manipulator with actuator failure and uncertain boundary disturbance. The dynamic model of the flexible manipulator as-described by partial differential equations (PDEs) is derived under Hamilton’s principle. The dynamic model is then used to design an adaptive fault-tolerant control (FTC) scheme which tracks the given angle and regulates vibration in the case of actuator failure. The boundary disturbance is compensated by a radial basis function (RBF) neural network. The whole closed-loop system is proven asymptotically stable by Lyapunov direct method and LaSalle’s invariance principle. Simulation results indicate that the proposed controller is superior to the traditional PD controller.
ISSN:0142-3312
1477-0369
DOI:10.1177/0142331219874157