Neural-network-based adaptive fault-tolerant vibration control of single-link flexible manipulator
This paper proposes an adaptive fault-tolerant control scheme for a single-link flexible manipulator with actuator failure and uncertain boundary disturbance. The dynamic model of the flexible manipulator as-described by partial differential equations (PDEs) is derived under Hamilton’s principle. Th...
Gespeichert in:
Veröffentlicht in: | Transactions of the Institute of Measurement and Control 2020-02, Vol.42 (3), p.430-438 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes an adaptive fault-tolerant control scheme for a single-link flexible manipulator with actuator failure and uncertain boundary disturbance. The dynamic model of the flexible manipulator as-described by partial differential equations (PDEs) is derived under Hamilton’s principle. The dynamic model is then used to design an adaptive fault-tolerant control (FTC) scheme which tracks the given angle and regulates vibration in the case of actuator failure. The boundary disturbance is compensated by a radial basis function (RBF) neural network. The whole closed-loop system is proven asymptotically stable by Lyapunov direct method and LaSalle’s invariance principle. Simulation results indicate that the proposed controller is superior to the traditional PD controller. |
---|---|
ISSN: | 0142-3312 1477-0369 |
DOI: | 10.1177/0142331219874157 |