Parallel solution of saddle point systems with nested iterative solvers based on the Golub-Kahan Bidiagonalization

We present a scalability study of Golub-Kahan bidiagonalization for the parallel iterative solution of symmetric indefinite linear systems with a 2x2 block structure. The algorithms have been implemented within the parallel numerical library PETSc. Since a nested inner-outer iteration strategy may b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-01
Hauptverfasser: Kruse, Carola, Sosonkina, Masha, Arioli, Mario, Tardieu, Nicolas, Ruede, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a scalability study of Golub-Kahan bidiagonalization for the parallel iterative solution of symmetric indefinite linear systems with a 2x2 block structure. The algorithms have been implemented within the parallel numerical library PETSc. Since a nested inner-outer iteration strategy may be necessary, we investigate different choices for the inner solvers, including parallel sparse direct and multigrid accelerated iterative methods. We show the strong and weak scalability of the Golub-Kahan bidiagonalization based iterative method when applied to a two-dimensional Poiseuille flow and to two- and three-dimensional Stokes test problems.
ISSN:2331-8422