An electroactive β-phase polyvinylidene fluoride as gel polymer electrolyte for magnesium–ion battery application
The gel polymer electrolytes (GPEs) are currently interesting research area in rechargeable batteries. In the present study, synthesis and characterization of electroactive gel polymer electrolyte (EGPE) for Mg-ion batteries application have been investigated. The bead free electroactive polyvinylid...
Gespeichert in:
Veröffentlicht in: | Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 2019-10, Vol.851, p.113417, Article 113417 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The gel polymer electrolytes (GPEs) are currently interesting research area in rechargeable batteries. In the present study, synthesis and characterization of electroactive gel polymer electrolyte (EGPE) for Mg-ion batteries application have been investigated. The bead free electroactive polyvinylidene fluoride (PVDF) with high porosity is achieved by an electrospinning process. The β-phase of PVDF is polar and electroactive with a high dipole moment. Electroactive β-phase is confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Field emission scanning electron microscopy (FESEM) study is done to analyze the structure and morphology of the electroactive membrane. The electroactive gel polymer electrolyte is formed by immersing an electroactive PVDF membrane in 0.3 M magnesium perchlorate (MgClO4) and propylene carbonate (PC) solution. The ionic conductivity of electroactive β-phase PVDF membrane is achieved to be 1.49 mS cm−1 at 30 °C, which is higher than commercial available polypropylene (PP) Celgard. Tortuosity of electroactive gel polymer electrolyte is found to be 1.44. The voltage stability of the EGPE is stable up to a high voltage of 5.0 V against Mg+2/Mg. The total ionic transference number and magnesium ion transference number of EGPE are also investigated to confirm high ionic conductivity.
[Display omitted] |
---|---|
ISSN: | 1572-6657 1873-2569 |
DOI: | 10.1016/j.jelechem.2019.113417 |