Rainfall‐Runoff Modeling Using Crowdsourced Water Level Data

Complex and costly discharge measurements are usually required to calibrate hydrological models. In contrast, water level measurements are straightforward, and practitioners can collect them using a crowdsourcing approach. Here we report how crowdsourced water levels were used to calibrate a lumped...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2019-12, Vol.55 (12), p.10856-10871
Hauptverfasser: Weeser, B., Jacobs, S., Kraft, P., Rufino, M. C., Breuer, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Complex and costly discharge measurements are usually required to calibrate hydrological models. In contrast, water level measurements are straightforward, and practitioners can collect them using a crowdsourcing approach. Here we report how crowdsourced water levels were used to calibrate a lumped hydrological model. Using six different calibration schemes based on discharge or crowdsourced water levels, we assessed the value of crowdsourced data for hydrological modeling. As a benchmark, we used estimated discharge from automatically measured water levels and identified 2,500 parameter sets that resulted in the highest Nash‐Sutcliffe‐Efficiencies in a Monte Carlo‐based uncertainty framework (Q‐NSE). Spearman‐Rank‐Coefficients between crowdsourced water levels and modeled discharge (CS‐SR) or observed discharge and modeled discharge (Q‐SR) were used as an alternative way to calibrate the model. Additionally, we applied a filtering scheme (F), where we removed parameter sets, which resulted in a runoff that did not agree with the water balance derived from measured precipitation and publicly available remotely sensed evapotranspiration data. For the Q‐NSE scheme, we achieved a mean NSE of 0.88, while NSEs of 0.43 and 0.36 were found for Q‐SR and CS‐SR, respectively. Within the filter schemes, NSEs approached the values achieved with the discharge calibrated model (Q‐SRF 0.7, CS‐SRF 0.69). Similar results were found for the validation period with slightly better efficiencies. With this study we demonstrate how crowdsourced water levels can be effectively used to calibrate a rainfall‐runoff model, making this modeling approach a potential tool for ungauged catchments. Key Points Crowdsourced water levels were used to calibrate a conceptual rainfall‐runoff model Combining crowdsourced water levels with a water balance derived from remotely sensed evapotranspiration increases the model efficiency Time‐variable‐collected water levels can be converted into a continuous discharge time series using a simple model approach
ISSN:0043-1397
1944-7973
DOI:10.1029/2019WR025248