A Self-adjointness Criterion for the Schrödinger Operator with Infinitely Many Point Interactions and Its Application to Random Operators

We prove the Schrödinger operator with infinitely many point interactions in R d ( d = 1 , 2 , 3 ) is self-adjoint if the support Γ of the interactions is decomposed into infinitely many bounded subsets { Γ j } j such that inf j ≠ k dist ( Γ j , Γ k ) > 0 . Using this fact, we prove the self-adjo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2020-02, Vol.21 (2), p.405-435
Hauptverfasser: Kaminaga, Masahiro, Mine, Takuya, Nakano, Fumihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue 2
container_start_page 405
container_title Annales Henri Poincaré
container_volume 21
creator Kaminaga, Masahiro
Mine, Takuya
Nakano, Fumihiko
description We prove the Schrödinger operator with infinitely many point interactions in R d ( d = 1 , 2 , 3 ) is self-adjoint if the support Γ of the interactions is decomposed into infinitely many bounded subsets { Γ j } j such that inf j ≠ k dist ( Γ j , Γ k ) > 0 . Using this fact, we prove the self-adjointness of the Schrödinger operator with point interactions on a random perturbation of a lattice or on the Poisson configuration. We also determine the spectrum of the Schrödinger operators with random point interactions of Poisson–Anderson type.
doi_str_mv 10.1007/s00023-019-00869-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2346496615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2346496615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c58573e5a11554453c1aa29241b1335acce691c8c1bae5360c8d40816dc6aec3</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhQdRsFZfwFXAdTT_5NKZZSleChXFdh_STMZOmSZjkiJ9BR_IF_DFzFipO1cJJ-d8gS_LLoFcAyGjm0AIySkmUGJCClFiOMoGwHKGiRBwfLjT0Wl2FsKaEMgLWg6yjzGam7bGqlq7xkZrQkAT30TjG2dR7TyKK4PmeuW_PqvGvhqPnjrjVUwv701coamtG5v67Q49KrtDzz0mpYmgdEyQgJSt0DQGNO66ttGqD1F06CXlbnPAhfPspFZtMBe_5zBb3N0uJg949nQ_nYxnWFMoI9a84CNquALgnDFONSiVlzmDJVDKldZGlKALDUtlOBVEFxUjBYhKC2U0HWZXe2zn3dvWhCjXbutt-lHmlAlWJmE8tfJ9S3sXgje17HyzUX4ngcheudwrl0m5_FEuIY3ofhRSuXf1h_5n9Q0eloaU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2346496615</pqid></control><display><type>article</type><title>A Self-adjointness Criterion for the Schrödinger Operator with Infinitely Many Point Interactions and Its Application to Random Operators</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kaminaga, Masahiro ; Mine, Takuya ; Nakano, Fumihiko</creator><creatorcontrib>Kaminaga, Masahiro ; Mine, Takuya ; Nakano, Fumihiko</creatorcontrib><description>We prove the Schrödinger operator with infinitely many point interactions in R d ( d = 1 , 2 , 3 ) is self-adjoint if the support Γ of the interactions is decomposed into infinitely many bounded subsets { Γ j } j such that inf j ≠ k dist ( Γ j , Γ k ) &gt; 0 . Using this fact, we prove the self-adjointness of the Schrödinger operator with point interactions on a random perturbation of a lattice or on the Poisson configuration. We also determine the spectrum of the Schrödinger operators with random point interactions of Poisson–Anderson type.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-019-00869-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classical and Quantum Gravitation ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Operators (mathematics) ; Original Paper ; Perturbation ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Annales Henri Poincaré, 2020-02, Vol.21 (2), p.405-435</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>2019© Springer Nature Switzerland AG 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c58573e5a11554453c1aa29241b1335acce691c8c1bae5360c8d40816dc6aec3</citedby><cites>FETCH-LOGICAL-c319t-c58573e5a11554453c1aa29241b1335acce691c8c1bae5360c8d40816dc6aec3</cites><orcidid>0000-0002-0790-2969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00023-019-00869-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00023-019-00869-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kaminaga, Masahiro</creatorcontrib><creatorcontrib>Mine, Takuya</creatorcontrib><creatorcontrib>Nakano, Fumihiko</creatorcontrib><title>A Self-adjointness Criterion for the Schrödinger Operator with Infinitely Many Point Interactions and Its Application to Random Operators</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><description>We prove the Schrödinger operator with infinitely many point interactions in R d ( d = 1 , 2 , 3 ) is self-adjoint if the support Γ of the interactions is decomposed into infinitely many bounded subsets { Γ j } j such that inf j ≠ k dist ( Γ j , Γ k ) &gt; 0 . Using this fact, we prove the self-adjointness of the Schrödinger operator with point interactions on a random perturbation of a lattice or on the Poisson configuration. We also determine the spectrum of the Schrödinger operators with random point interactions of Poisson–Anderson type.</description><subject>Classical and Quantum Gravitation</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Operators (mathematics)</subject><subject>Original Paper</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEYhQdRsFZfwFXAdTT_5NKZZSleChXFdh_STMZOmSZjkiJ9BR_IF_DFzFipO1cJJ-d8gS_LLoFcAyGjm0AIySkmUGJCClFiOMoGwHKGiRBwfLjT0Wl2FsKaEMgLWg6yjzGam7bGqlq7xkZrQkAT30TjG2dR7TyKK4PmeuW_PqvGvhqPnjrjVUwv701coamtG5v67Q49KrtDzz0mpYmgdEyQgJSt0DQGNO66ttGqD1F06CXlbnPAhfPspFZtMBe_5zBb3N0uJg949nQ_nYxnWFMoI9a84CNquALgnDFONSiVlzmDJVDKldZGlKALDUtlOBVEFxUjBYhKC2U0HWZXe2zn3dvWhCjXbutt-lHmlAlWJmE8tfJ9S3sXgje17HyzUX4ngcheudwrl0m5_FEuIY3ofhRSuXf1h_5n9Q0eloaU</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Kaminaga, Masahiro</creator><creator>Mine, Takuya</creator><creator>Nakano, Fumihiko</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0790-2969</orcidid></search><sort><creationdate>20200201</creationdate><title>A Self-adjointness Criterion for the Schrödinger Operator with Infinitely Many Point Interactions and Its Application to Random Operators</title><author>Kaminaga, Masahiro ; Mine, Takuya ; Nakano, Fumihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c58573e5a11554453c1aa29241b1335acce691c8c1bae5360c8d40816dc6aec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Operators (mathematics)</topic><topic>Original Paper</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaminaga, Masahiro</creatorcontrib><creatorcontrib>Mine, Takuya</creatorcontrib><creatorcontrib>Nakano, Fumihiko</creatorcontrib><collection>CrossRef</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaminaga, Masahiro</au><au>Mine, Takuya</au><au>Nakano, Fumihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Self-adjointness Criterion for the Schrödinger Operator with Infinitely Many Point Interactions and Its Application to Random Operators</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>21</volume><issue>2</issue><spage>405</spage><epage>435</epage><pages>405-435</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>We prove the Schrödinger operator with infinitely many point interactions in R d ( d = 1 , 2 , 3 ) is self-adjoint if the support Γ of the interactions is decomposed into infinitely many bounded subsets { Γ j } j such that inf j ≠ k dist ( Γ j , Γ k ) &gt; 0 . Using this fact, we prove the self-adjointness of the Schrödinger operator with point interactions on a random perturbation of a lattice or on the Poisson configuration. We also determine the spectrum of the Schrödinger operators with random point interactions of Poisson–Anderson type.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-019-00869-1</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-0790-2969</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1424-0637
ispartof Annales Henri Poincaré, 2020-02, Vol.21 (2), p.405-435
issn 1424-0637
1424-0661
language eng
recordid cdi_proquest_journals_2346496615
source SpringerLink Journals - AutoHoldings
subjects Classical and Quantum Gravitation
Dynamical Systems and Ergodic Theory
Elementary Particles
Mathematical and Computational Physics
Mathematical Methods in Physics
Operators (mathematics)
Original Paper
Perturbation
Physics
Physics and Astronomy
Quantum Field Theory
Quantum Physics
Relativity Theory
Theoretical
title A Self-adjointness Criterion for the Schrödinger Operator with Infinitely Many Point Interactions and Its Application to Random Operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Self-adjointness%20Criterion%20for%20the%20Schr%C3%B6dinger%20Operator%20with%20Infinitely%20Many%20Point%20Interactions%20and%20Its%20Application%20to%20Random%20Operators&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Kaminaga,%20Masahiro&rft.date=2020-02-01&rft.volume=21&rft.issue=2&rft.spage=405&rft.epage=435&rft.pages=405-435&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-019-00869-1&rft_dat=%3Cproquest_cross%3E2346496615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2346496615&rft_id=info:pmid/&rfr_iscdi=true