A Self-adjointness Criterion for the Schrödinger Operator with Infinitely Many Point Interactions and Its Application to Random Operators

We prove the Schrödinger operator with infinitely many point interactions in R d ( d = 1 , 2 , 3 ) is self-adjoint if the support Γ of the interactions is decomposed into infinitely many bounded subsets { Γ j } j such that inf j ≠ k dist ( Γ j , Γ k ) > 0 . Using this fact, we prove the self-adjo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2020-02, Vol.21 (2), p.405-435
Hauptverfasser: Kaminaga, Masahiro, Mine, Takuya, Nakano, Fumihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the Schrödinger operator with infinitely many point interactions in R d ( d = 1 , 2 , 3 ) is self-adjoint if the support Γ of the interactions is decomposed into infinitely many bounded subsets { Γ j } j such that inf j ≠ k dist ( Γ j , Γ k ) > 0 . Using this fact, we prove the self-adjointness of the Schrödinger operator with point interactions on a random perturbation of a lattice or on the Poisson configuration. We also determine the spectrum of the Schrödinger operators with random point interactions of Poisson–Anderson type.
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-019-00869-1