Human-tissue-inspired anti-fatigue-fracture hydrogel for a sensitive wide-range human–machine interface
The emerging applications of hydrogels in flexible electronics require hydrogels to possess excellent anti-fatigue fracture and self-healing properties; this remains an important unmet scientific challenge. Herein, inspired by human tissues, an effective and simple strategy is proposed to prepare a...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020, Vol.8 (4), p.2074-2082 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The emerging applications of hydrogels in flexible electronics require hydrogels to possess excellent anti-fatigue fracture and self-healing properties; this remains an important unmet scientific challenge. Herein, inspired by human tissues, an effective and simple strategy is proposed to prepare a multifunctional hydrogel that shows ultra-stretchable (>2900%), anti-fatigue-fracture, and self-healable properties. Moreover, the hydrogel exhibits high sensitivity in a wide strain window when used as a strain sensor. More importantly, benefiting from the self-healing and anti-fatigue-fracture properties, the sensing properties of the hydrogel are fully restored after a cutting-and-healing process and it keeps working for a very long time (>20 000 cycles) even after being severely damaged. This hydrogel shows great potential for future artificial intelligence and human–machine interface applications. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/C9TA08111A |