Human-tissue-inspired anti-fatigue-fracture hydrogel for a sensitive wide-range human–machine interface

The emerging applications of hydrogels in flexible electronics require hydrogels to possess excellent anti-fatigue fracture and self-healing properties; this remains an important unmet scientific challenge. Herein, inspired by human tissues, an effective and simple strategy is proposed to prepare a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020, Vol.8 (4), p.2074-2082
Hauptverfasser: Su, Gehong, Cao, Jie, Zhang, Xueqian, Zhang, Yulin, Yin, Shuya, Jia, Liyang, Guo, Quanquan, Zhang, Xinxing, Zhang, Junhua, Zhou, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The emerging applications of hydrogels in flexible electronics require hydrogels to possess excellent anti-fatigue fracture and self-healing properties; this remains an important unmet scientific challenge. Herein, inspired by human tissues, an effective and simple strategy is proposed to prepare a multifunctional hydrogel that shows ultra-stretchable (>2900%), anti-fatigue-fracture, and self-healable properties. Moreover, the hydrogel exhibits high sensitivity in a wide strain window when used as a strain sensor. More importantly, benefiting from the self-healing and anti-fatigue-fracture properties, the sensing properties of the hydrogel are fully restored after a cutting-and-healing process and it keeps working for a very long time (>20 000 cycles) even after being severely damaged. This hydrogel shows great potential for future artificial intelligence and human–machine interface applications.
ISSN:2050-7488
2050-7496
DOI:10.1039/C9TA08111A