Inexact Relative Smoothness and Strong Convexity for Optimization and Variational Inequalities by Inexact Model

In this paper, we propose a general algorithmic framework for first-order methods in optimization in a broad sense, including minimization problems, saddle-point problems, and variational inequalities. This framework allows obtaining many known methods as a special case, the list including accelerat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-12
Hauptverfasser: Stonyakin, Fedor, Tyurin, Alexander, Gasnikov, Alexander, Dvurechensky, Pavel, Agafonov, Artem, Dvinskikh, Darina, Alkousa, Mohammad, Pasechnyuk, Dmitry, Artamonov, Sergei, Piskunova, Victorya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a general algorithmic framework for first-order methods in optimization in a broad sense, including minimization problems, saddle-point problems, and variational inequalities. This framework allows obtaining many known methods as a special case, the list including accelerated gradient method, composite optimization methods, level-set methods, Bregman proximal methods. The idea of the framework is based on constructing an inexact model of the main problem component, i.e. objective function in optimization or operator in variational inequalities. Besides reproducing known results, our framework allows constructing new methods, which we illustrate by constructing a universal conditional gradient method and a universal method for variational inequalities with a composite structure. This method works for smooth and non-smooth problems with optimal complexity without a priori knowledge of the problem's smoothness. As a particular case of our general framework, we introduce relative smoothness for operators and propose an algorithm for variational inequalities (VIs) with such operators. We also generalize our framework for relatively strongly convex objectives and strongly monotone variational inequalities. This paper is an extended and updated version of [arXiv:1902.00990]. In particular, we add an extension of relative strong convexity for optimization and variational inequalities.
ISSN:2331-8422