Permeability from 3D Porous Media Images: a Fast Two-Step Approach
An efficient methodology to calculate absolute permeability of porous media using a two-step algorithm is developed. In the first step, the creeping flow equations over the pore space are translated into a Darcy flow problem with the pore space being represented by appropriately chosen local flow co...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2018-09, Vol.124 (3), p.1017-1033 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An efficient methodology to calculate absolute permeability of porous media using a two-step algorithm is developed. In the first step, the creeping flow equations over the pore space are translated into a Darcy flow problem with the pore space being represented by appropriately chosen local flow conductivities. In the next step, a combined renormalization group and multi-level iterative Laplace solver approach is used to upscale the local conductivities to obtain the effective permeability for the full domain. The accuracy and computational efficiency of the proposed two-step local conductivity–Laplace scheme (LC-LAP) are tested against a FFT (fast Fourier transform) accelerated solver which uses a semi-implicit method for the pressure-linked equation (SIMPLE-FFT) and against a solver that features the GPGPU implementation of the multiple-relaxation-time lattice Boltzmann method (MRT-LBM). A detailed comparison is made by computing permeabilities from all three methods over model geometries and digitized images obtained from micron-scale-resolution computerized tomography (micro-CT) of sandstone rocks of varying porosities and heterogeneity levels. We observe an agreement between our method and either benchmark methods (SIMPLE-FFT and MRT-LBM) that is similar to the agreement between both benchmarks. On the samples tested, the computational performance advantage of the LC-LAP approach ranges from 10- to 40-fold compered to SIMPLE-FFT and 8- to 25-fold compared to MRT-LBM. The proposed method is suitable for fast computations and for computations over very large volumes (due to much lower memory and compute resource requirements) for determining single-phase permeabilities of medium- to high-permeability rocks. |
---|---|
ISSN: | 0169-3913 1573-1634 |
DOI: | 10.1007/s11242-018-1108-0 |