Tuning the pore architectures of hierarchically porous carbons from high internal phase emulsion template by polyaniline-coated CNTs

The work reported the preparation of hierarchically porous carbons (HPCs) with adjustable pore architectures using high internal phase emulsion (HIPE) template with the presence of polyaniline-coated carbon nanotubes (PANI-CNTs). PANI-CNTs were obtained via in situ polymerization of aniline in CNT s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloid and polymer science 2020-02, Vol.298 (2), p.179-191
Hauptverfasser: Zhao, Yulai, Zhang, Jing, Wei, Mengzhi, Xiao, Longqiang, Huang, Bin, Hou, Linxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The work reported the preparation of hierarchically porous carbons (HPCs) with adjustable pore architectures using high internal phase emulsion (HIPE) template with the presence of polyaniline-coated carbon nanotubes (PANI-CNTs). PANI-CNTs were obtained via in situ polymerization of aniline in CNT suspension as confirmed by scanning electron microscope (SEM) and thermogravimetric analysis (TGA). Porous polydivinylbenzene (PDVB) monoliths were prepared by polymerizing the continuous phase of HIPE with PANI-CNTs dispersed in the internal phase. After carbonization and activation, HPCs with variable pore architectures were obtained. As observed by SEM, the PANI-CNTs showed notable influence on the pore architectures of PDVBs and HPCs. The void size of PDVB precursor reduced with the increase of the mass ratio of PANI to CNT, as well as the content of PANI-CNTs. Nitrogen adsorption/desorption measurements indicated the coexistence of mesopores and micropores, namely, hierarchical pores. The specific surface area (SSA) of HPC increased along with the content of PANI-CNTs from 1893 to 2392 m 2 /g. The capability of HPCs as the electrode material of supercapacitor was evaluated via electrochemical tests. The results indicated that the HPC with optimized pore architecture showed a higher specific capacitance (168.6 F/g) than the contrast sample (130.9 F/g) at 1 A/g. The better capacitance performance of HPC obtained with the presence of PANI-CNTs could be attributed to the reasonable hierarchical pores, higher SSA, and higher graphitization degree.
ISSN:0303-402X
1435-1536
DOI:10.1007/s00396-019-04594-3