Real-time and Contactless Mold Thermal Monitoring: Improving Metallurgy, Quality and Productivity of Billets and Blooms

Today the mold thermal mapping technology is typically applied to the CCMs for slabs with solutions based on the installation of thermocouples (TC) or optical fibre cables (OFC), inserted into channels machined in the plate molds. The final installation is complex, since every single mold must be ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BHM. Berg- und hüttenmännische Monatshefte 2020, Vol.165 (1), p.11-18
Hauptverfasser: Mazza, I., Miani, S., Schiavon, G., Spagnul, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Today the mold thermal mapping technology is typically applied to the CCMs for slabs with solutions based on the installation of thermocouples (TC) or optical fibre cables (OFC), inserted into channels machined in the plate molds. The final installation is complex, since every single mold must be machined and the quantity of cables is considerable, making every mold change a complex and time-consuming activity. Extending TC or OFC application to billets and blooms would require invasive and expensive CNC machining of the curved mold tubes. In order to overcome these limits, Ergolines designed a new system based on contactless ultrasound technology which provides the real-time mold thermal map without the need to machine the copper, offering a new reliable tool also to the CCMs for small sections. By providing real-time data of the thermal distribution of the mold, Ergolines’ system can be fruitfully used by the technical personnel to improve the casting practice, the steel quality and the plant productivity.
ISSN:0005-8912
1613-7531
DOI:10.1007/s00501-019-00940-8