Suspect and Nontarget Screening for Contaminants of Emerging Concern in an Urban Estuary
This study used suspect and nontarget screening with high-resolution mass spectrometry to characterize the occurrence of contaminants of emerging concern (CECs) in the nearshore marine environment of Puget Sound (WA). In total, 87 non-polymeric CECs were identified; those confirmed with reference st...
Gespeichert in:
Veröffentlicht in: | Environmental Science & Technology 2020-01, Vol.54 (2), p.889-901 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study used suspect and nontarget screening with high-resolution mass spectrometry to characterize the occurrence of contaminants of emerging concern (CECs) in the nearshore marine environment of Puget Sound (WA). In total, 87 non-polymeric CECs were identified; those confirmed with reference standards (45) included pharmaceuticals, herbicides, vehicle-related compounds, plasticizers, and flame retardants. Eight polyfluoroalkyl substances were detected; perfluorooctanesulfonic acid (PFOS) concentrations were as high as 72–140 ng/L at one location. Low levels of methamphetamine were detected in 41% of the samples. Transformation products of pesticides were tentatively identified, including two novel transformation products of tebuthiuron. While a hydrodynamic simulation, analytical results, and dilution calculations demonstrated the prevalence of wastewater effluent to nearshore marine environments, the identity and abundance of selected CECs revealed the additional contributions from stormwater and localized urban and industrial sources. For the confirmed CECs, risk quotients were calculated based on concentrations and predicted toxicities, and eight CECs had risk quotients >1. Dilution in the marine estuarine environment lowered the risks of most wastewater-derived CECs, but dilution alone is insufficient to mitigate risks of localized inputs. These findings highlighted the necessity of suspect and nontarget screening and revealed the importance of localized contamination sources in urban marine environments. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.9b06126 |