Efficient estimation of a linear transformation model for current status data via penalized splines

We propose a flexible and computationally efficient penalized estimation method for a semi-parametric linear transformation model with current status data. To facilitate model fitting, the unknown monotone function is approximated by monotone B-splines, and a computationally efficient hybrid algorit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2020-01, Vol.29 (1), p.3-14
Hauptverfasser: Lu, Minggen, Liu, Yan, Li, Chin-Shang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a flexible and computationally efficient penalized estimation method for a semi-parametric linear transformation model with current status data. To facilitate model fitting, the unknown monotone function is approximated by monotone B-splines, and a computationally efficient hybrid algorithm involving the Fisher scoring algorithm and the isotonic regression is developed. A goodness-of-fit test and model diagnostics are also considered. The asymptotic properties of the penalized estimators are established, including the optimal rate of convergence for the function estimator and the semi-parametric efficiency for the regression parameter estimators. An extensive numerical experiment is conducted to evaluate the finite-sample properties of the penalized estimators, and the methodology is further illustrated with two real studies.
ISSN:0962-2802
1477-0334
DOI:10.1177/0962280218820406