Efficient estimation of a linear transformation model for current status data via penalized splines
We propose a flexible and computationally efficient penalized estimation method for a semi-parametric linear transformation model with current status data. To facilitate model fitting, the unknown monotone function is approximated by monotone B-splines, and a computationally efficient hybrid algorit...
Gespeichert in:
Veröffentlicht in: | Statistical methods in medical research 2020-01, Vol.29 (1), p.3-14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a flexible and computationally efficient penalized estimation method for a semi-parametric linear transformation model with current status data. To facilitate model fitting, the unknown monotone function is approximated by monotone B-splines, and a computationally efficient hybrid algorithm involving the Fisher scoring algorithm and the isotonic regression is developed. A goodness-of-fit test and model diagnostics are also considered. The asymptotic properties of the penalized estimators are established, including the optimal rate of convergence for the function estimator and the semi-parametric efficiency for the regression parameter estimators. An extensive numerical experiment is conducted to evaluate the finite-sample properties of the penalized estimators, and the methodology is further illustrated with two real studies. |
---|---|
ISSN: | 0962-2802 1477-0334 |
DOI: | 10.1177/0962280218820406 |