Development of Poly(lactic acid) Nanocomposites Reinforced with Hydrophobized Bacterial Cellulose
Poly(lactic acid)/bacterial cellulose nanocomposites were prepared by solvent casting. Aiming to reduce the incompatibility between polar bacterial cellulose (BC) and the nonpolar poly(lactic acid) (PLA) matrix which induces filler aggregation and poor reinforcement dispersion, BC was acetylated by...
Gespeichert in:
Veröffentlicht in: | Journal of polymers and the environment 2020, Vol.28 (1), p.61-73 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Poly(lactic acid)/bacterial cellulose nanocomposites were prepared by solvent casting. Aiming to reduce the incompatibility between polar bacterial cellulose (BC) and the nonpolar poly(lactic acid) (PLA) matrix which induces filler aggregation and poor reinforcement dispersion, BC was acetylated by the use of a non-conventional route catalyzed by citric acid. The derivatized BC (AcBC) was incorporated into de PLA matrix at varying filler loadings, and optical, morphological, structural, thermal, tensile and barrier (water vapor) properties of PLA/AcBC in comparison with PLA/BC were evaluated. Noticeable changes in the nanocomposite properties were ascribed to the success of the route proposed to surface hydrophobize BC, which significantly improved its dispersibility within the PLA matrix and the matrix-filler interaction. By the way, the variation of filler loading allowed attaining remarkable increases in the nanocomposite films stiffness without significant reductions in tensile strength and water vapor permeability. |
---|---|
ISSN: | 1566-2543 1572-8919 |
DOI: | 10.1007/s10924-019-01581-1 |