A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations
In this paper, a conservative compact finite difference scheme is presented to numerically solve the coupled Schrödinger-KdV equations. The analytic solutions of the coupled equations have some invariants such as the number of plasmons, the number of particles, and the energy of oscillations, and we...
Gespeichert in:
Veröffentlicht in: | Advances in computational mathematics 2020-02, Vol.46 (1), Article 1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Advances in computational mathematics |
container_volume | 46 |
creator | Xie, Shusen Yi, Su-Cheol |
description | In this paper, a conservative compact finite difference scheme is presented to numerically solve the coupled Schrödinger-KdV equations. The analytic solutions of the coupled equations have some invariants such as the number of plasmons, the number of particles, and the energy of oscillations, and we proved that the compact difference scheme preserves those invariants in discrete sense. Optimal order convergence rate of the proposed linearized compact scheme was analyzed. Numerical experiments on model problems show that the scheme is of high accuracy. |
doi_str_mv | 10.1007/s10444-020-09758-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343582298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343582298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bd0d0824d5365ee7a1f183f885a5914402599325251d67e3aa1defe53d7234233</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTb4Ecf2sqp4iUoseCzYWCYe01RtktoJEj_GD_BjuASJHauZ0Zx7R3MROmX0nFGqLhKjRVEQyimhRklN-B6aMKk4MXmxn3vKDFGs1IfoKKUVpdSUSk7QywxXbZMgvru-foc8bDpX9TjUTd0D9nUIEKGpAKdqCRvAoY24X-7AoVuDxw_VMn59-rp5g0ju_DOG7ZCtsucxOghuneDkt07R09Xl4_yGLO6vb-ezBakEMz159dRTzQsvRSkBlGOBaRG0lk4aVhSUS2MEl1wyXyoQzjEPAaTwiouCCzFFZ6NvF9vtAKm3q3aITT5pMyCk5tzoTPGRqmKbUoRgu1hvXPywjNpdhnbM0OYM7U-GWT1FYhSlDO8-_LP-R_UNuiZ0mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343582298</pqid></control><display><type>article</type><title>A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xie, Shusen ; Yi, Su-Cheol</creator><creatorcontrib>Xie, Shusen ; Yi, Su-Cheol</creatorcontrib><description>In this paper, a conservative compact finite difference scheme is presented to numerically solve the coupled Schrödinger-KdV equations. The analytic solutions of the coupled equations have some invariants such as the number of plasmons, the number of particles, and the energy of oscillations, and we proved that the compact difference scheme preserves those invariants in discrete sense. Optimal order convergence rate of the proposed linearized compact scheme was analyzed. Numerical experiments on model problems show that the scheme is of high accuracy.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-020-09758-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computational mathematics ; Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Exact solutions ; Finite difference method ; Invariants ; Mathematical and Computational Biology ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Plasmons ; Viscosity ; Visualization</subject><ispartof>Advances in computational mathematics, 2020-02, Vol.46 (1), Article 1</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bd0d0824d5365ee7a1f183f885a5914402599325251d67e3aa1defe53d7234233</citedby><cites>FETCH-LOGICAL-c319t-bd0d0824d5365ee7a1f183f885a5914402599325251d67e3aa1defe53d7234233</cites><orcidid>0000-0002-1090-4666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10444-020-09758-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10444-020-09758-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Xie, Shusen</creatorcontrib><creatorcontrib>Yi, Su-Cheol</creatorcontrib><title>A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations</title><title>Advances in computational mathematics</title><addtitle>Adv Comput Math</addtitle><description>In this paper, a conservative compact finite difference scheme is presented to numerically solve the coupled Schrödinger-KdV equations. The analytic solutions of the coupled equations have some invariants such as the number of plasmons, the number of particles, and the energy of oscillations, and we proved that the compact difference scheme preserves those invariants in discrete sense. Optimal order convergence rate of the proposed linearized compact scheme was analyzed. Numerical experiments on model problems show that the scheme is of high accuracy.</description><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Exact solutions</subject><subject>Finite difference method</subject><subject>Invariants</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Plasmons</subject><subject>Viscosity</subject><subject>Visualization</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTb4Ecf2sqp4iUoseCzYWCYe01RtktoJEj_GD_BjuASJHauZ0Zx7R3MROmX0nFGqLhKjRVEQyimhRklN-B6aMKk4MXmxn3vKDFGs1IfoKKUVpdSUSk7QywxXbZMgvru-foc8bDpX9TjUTd0D9nUIEKGpAKdqCRvAoY24X-7AoVuDxw_VMn59-rp5g0ju_DOG7ZCtsucxOghuneDkt07R09Xl4_yGLO6vb-ezBakEMz159dRTzQsvRSkBlGOBaRG0lk4aVhSUS2MEl1wyXyoQzjEPAaTwiouCCzFFZ6NvF9vtAKm3q3aITT5pMyCk5tzoTPGRqmKbUoRgu1hvXPywjNpdhnbM0OYM7U-GWT1FYhSlDO8-_LP-R_UNuiZ0mQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Xie, Shusen</creator><creator>Yi, Su-Cheol</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1090-4666</orcidid></search><sort><creationdate>20200201</creationdate><title>A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations</title><author>Xie, Shusen ; Yi, Su-Cheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bd0d0824d5365ee7a1f183f885a5914402599325251d67e3aa1defe53d7234233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Exact solutions</topic><topic>Finite difference method</topic><topic>Invariants</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Plasmons</topic><topic>Viscosity</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Shusen</creatorcontrib><creatorcontrib>Yi, Su-Cheol</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Shusen</au><au>Yi, Su-Cheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations</atitle><jtitle>Advances in computational mathematics</jtitle><stitle>Adv Comput Math</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>46</volume><issue>1</issue><artnum>1</artnum><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>In this paper, a conservative compact finite difference scheme is presented to numerically solve the coupled Schrödinger-KdV equations. The analytic solutions of the coupled equations have some invariants such as the number of plasmons, the number of particles, and the energy of oscillations, and we proved that the compact difference scheme preserves those invariants in discrete sense. Optimal order convergence rate of the proposed linearized compact scheme was analyzed. Numerical experiments on model problems show that the scheme is of high accuracy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10444-020-09758-2</doi><orcidid>https://orcid.org/0000-0002-1090-4666</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1019-7168 |
ispartof | Advances in computational mathematics, 2020-02, Vol.46 (1), Article 1 |
issn | 1019-7168 1572-9044 |
language | eng |
recordid | cdi_proquest_journals_2343582298 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computational mathematics Computational Mathematics and Numerical Analysis Computational Science and Engineering Exact solutions Finite difference method Invariants Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Plasmons Viscosity Visualization |
title | A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20conservative%20compact%20finite%20difference%20scheme%20for%20the%20coupled%20Schr%C3%B6dinger-KdV%20equations&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=Xie,%20Shusen&rft.date=2020-02-01&rft.volume=46&rft.issue=1&rft.artnum=1&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-020-09758-2&rft_dat=%3Cproquest_cross%3E2343582298%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343582298&rft_id=info:pmid/&rfr_iscdi=true |