A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations

In this paper, a conservative compact finite difference scheme is presented to numerically solve the coupled Schrödinger-KdV equations. The analytic solutions of the coupled equations have some invariants such as the number of plasmons, the number of particles, and the energy of oscillations, and we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2020-02, Vol.46 (1), Article 1
Hauptverfasser: Xie, Shusen, Yi, Su-Cheol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Advances in computational mathematics
container_volume 46
creator Xie, Shusen
Yi, Su-Cheol
description In this paper, a conservative compact finite difference scheme is presented to numerically solve the coupled Schrödinger-KdV equations. The analytic solutions of the coupled equations have some invariants such as the number of plasmons, the number of particles, and the energy of oscillations, and we proved that the compact difference scheme preserves those invariants in discrete sense. Optimal order convergence rate of the proposed linearized compact scheme was analyzed. Numerical experiments on model problems show that the scheme is of high accuracy.
doi_str_mv 10.1007/s10444-020-09758-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343582298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343582298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bd0d0824d5365ee7a1f183f885a5914402599325251d67e3aa1defe53d7234233</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTb4Ecf2sqp4iUoseCzYWCYe01RtktoJEj_GD_BjuASJHauZ0Zx7R3MROmX0nFGqLhKjRVEQyimhRklN-B6aMKk4MXmxn3vKDFGs1IfoKKUVpdSUSk7QywxXbZMgvru-foc8bDpX9TjUTd0D9nUIEKGpAKdqCRvAoY24X-7AoVuDxw_VMn59-rp5g0ju_DOG7ZCtsucxOghuneDkt07R09Xl4_yGLO6vb-ezBakEMz159dRTzQsvRSkBlGOBaRG0lk4aVhSUS2MEl1wyXyoQzjEPAaTwiouCCzFFZ6NvF9vtAKm3q3aITT5pMyCk5tzoTPGRqmKbUoRgu1hvXPywjNpdhnbM0OYM7U-GWT1FYhSlDO8-_LP-R_UNuiZ0mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343582298</pqid></control><display><type>article</type><title>A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xie, Shusen ; Yi, Su-Cheol</creator><creatorcontrib>Xie, Shusen ; Yi, Su-Cheol</creatorcontrib><description>In this paper, a conservative compact finite difference scheme is presented to numerically solve the coupled Schrödinger-KdV equations. The analytic solutions of the coupled equations have some invariants such as the number of plasmons, the number of particles, and the energy of oscillations, and we proved that the compact difference scheme preserves those invariants in discrete sense. Optimal order convergence rate of the proposed linearized compact scheme was analyzed. Numerical experiments on model problems show that the scheme is of high accuracy.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-020-09758-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computational mathematics ; Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Exact solutions ; Finite difference method ; Invariants ; Mathematical and Computational Biology ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Plasmons ; Viscosity ; Visualization</subject><ispartof>Advances in computational mathematics, 2020-02, Vol.46 (1), Article 1</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bd0d0824d5365ee7a1f183f885a5914402599325251d67e3aa1defe53d7234233</citedby><cites>FETCH-LOGICAL-c319t-bd0d0824d5365ee7a1f183f885a5914402599325251d67e3aa1defe53d7234233</cites><orcidid>0000-0002-1090-4666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10444-020-09758-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10444-020-09758-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Xie, Shusen</creatorcontrib><creatorcontrib>Yi, Su-Cheol</creatorcontrib><title>A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations</title><title>Advances in computational mathematics</title><addtitle>Adv Comput Math</addtitle><description>In this paper, a conservative compact finite difference scheme is presented to numerically solve the coupled Schrödinger-KdV equations. The analytic solutions of the coupled equations have some invariants such as the number of plasmons, the number of particles, and the energy of oscillations, and we proved that the compact difference scheme preserves those invariants in discrete sense. Optimal order convergence rate of the proposed linearized compact scheme was analyzed. Numerical experiments on model problems show that the scheme is of high accuracy.</description><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Exact solutions</subject><subject>Finite difference method</subject><subject>Invariants</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Plasmons</subject><subject>Viscosity</subject><subject>Visualization</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTb4Ecf2sqp4iUoseCzYWCYe01RtktoJEj_GD_BjuASJHauZ0Zx7R3MROmX0nFGqLhKjRVEQyimhRklN-B6aMKk4MXmxn3vKDFGs1IfoKKUVpdSUSk7QywxXbZMgvru-foc8bDpX9TjUTd0D9nUIEKGpAKdqCRvAoY24X-7AoVuDxw_VMn59-rp5g0ju_DOG7ZCtsucxOghuneDkt07R09Xl4_yGLO6vb-ezBakEMz159dRTzQsvRSkBlGOBaRG0lk4aVhSUS2MEl1wyXyoQzjEPAaTwiouCCzFFZ6NvF9vtAKm3q3aITT5pMyCk5tzoTPGRqmKbUoRgu1hvXPywjNpdhnbM0OYM7U-GWT1FYhSlDO8-_LP-R_UNuiZ0mQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Xie, Shusen</creator><creator>Yi, Su-Cheol</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1090-4666</orcidid></search><sort><creationdate>20200201</creationdate><title>A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations</title><author>Xie, Shusen ; Yi, Su-Cheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bd0d0824d5365ee7a1f183f885a5914402599325251d67e3aa1defe53d7234233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Exact solutions</topic><topic>Finite difference method</topic><topic>Invariants</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Plasmons</topic><topic>Viscosity</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Shusen</creatorcontrib><creatorcontrib>Yi, Su-Cheol</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Shusen</au><au>Yi, Su-Cheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations</atitle><jtitle>Advances in computational mathematics</jtitle><stitle>Adv Comput Math</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>46</volume><issue>1</issue><artnum>1</artnum><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>In this paper, a conservative compact finite difference scheme is presented to numerically solve the coupled Schrödinger-KdV equations. The analytic solutions of the coupled equations have some invariants such as the number of plasmons, the number of particles, and the energy of oscillations, and we proved that the compact difference scheme preserves those invariants in discrete sense. Optimal order convergence rate of the proposed linearized compact scheme was analyzed. Numerical experiments on model problems show that the scheme is of high accuracy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10444-020-09758-2</doi><orcidid>https://orcid.org/0000-0002-1090-4666</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1019-7168
ispartof Advances in computational mathematics, 2020-02, Vol.46 (1), Article 1
issn 1019-7168
1572-9044
language eng
recordid cdi_proquest_journals_2343582298
source SpringerLink Journals - AutoHoldings
subjects Computational mathematics
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Exact solutions
Finite difference method
Invariants
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Plasmons
Viscosity
Visualization
title A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20conservative%20compact%20finite%20difference%20scheme%20for%20the%20coupled%20Schr%C3%B6dinger-KdV%20equations&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=Xie,%20Shusen&rft.date=2020-02-01&rft.volume=46&rft.issue=1&rft.artnum=1&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-020-09758-2&rft_dat=%3Cproquest_cross%3E2343582298%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343582298&rft_id=info:pmid/&rfr_iscdi=true