A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations

In this paper, a conservative compact finite difference scheme is presented to numerically solve the coupled Schrödinger-KdV equations. The analytic solutions of the coupled equations have some invariants such as the number of plasmons, the number of particles, and the energy of oscillations, and we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2020-02, Vol.46 (1), Article 1
Hauptverfasser: Xie, Shusen, Yi, Su-Cheol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a conservative compact finite difference scheme is presented to numerically solve the coupled Schrödinger-KdV equations. The analytic solutions of the coupled equations have some invariants such as the number of plasmons, the number of particles, and the energy of oscillations, and we proved that the compact difference scheme preserves those invariants in discrete sense. Optimal order convergence rate of the proposed linearized compact scheme was analyzed. Numerical experiments on model problems show that the scheme is of high accuracy.
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-020-09758-2