On complete intersections containing a linear subspace

Consider the Fano scheme F k ( Y ) parameterizing k -dimensional linear subspaces contained in a complete intersection Y ⊂ P m of multi-degree d ̲ = ( d 1 , … , d s ) . It is known that, if t : = ∑ i = 1 s d i + k k - ( k + 1 ) ( m - k ) ⩽ 0 and ∏ i = 1 s d i > 2 , for Y a general complete inters...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2020-02, Vol.204 (1), p.231-239
Hauptverfasser: Bastianelli, Francesco, Ciliberto, Ciro, Flamini, Flaminio, Supino, Paola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider the Fano scheme F k ( Y ) parameterizing k -dimensional linear subspaces contained in a complete intersection Y ⊂ P m of multi-degree d ̲ = ( d 1 , … , d s ) . It is known that, if t : = ∑ i = 1 s d i + k k - ( k + 1 ) ( m - k ) ⩽ 0 and ∏ i = 1 s d i > 2 , for Y a general complete intersection as above, then F k ( Y ) has dimension - t . In this paper we consider the case t > 0 . Then the locus W d ̲ , k of all complete intersections as above containing a k -dimensional linear subspace is irreducible and turns out to have codimension t in the parameter space of all complete intersections with the given multi-degree. Moreover, we prove that for general [ Y ] ∈ W d ̲ , k the scheme F k ( Y ) is zero-dimensional of length one. This implies that W d ̲ , k is rational.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-019-00452-2