On complete intersections containing a linear subspace
Consider the Fano scheme F k ( Y ) parameterizing k -dimensional linear subspaces contained in a complete intersection Y ⊂ P m of multi-degree d ̲ = ( d 1 , … , d s ) . It is known that, if t : = ∑ i = 1 s d i + k k - ( k + 1 ) ( m - k ) ⩽ 0 and ∏ i = 1 s d i > 2 , for Y a general complete inters...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2020-02, Vol.204 (1), p.231-239 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider the Fano scheme
F
k
(
Y
)
parameterizing
k
-dimensional linear subspaces contained in a complete intersection
Y
⊂
P
m
of multi-degree
d
̲
=
(
d
1
,
…
,
d
s
)
. It is known that, if
t
:
=
∑
i
=
1
s
d
i
+
k
k
-
(
k
+
1
)
(
m
-
k
)
⩽
0
and
∏
i
=
1
s
d
i
>
2
, for
Y
a general complete intersection as above, then
F
k
(
Y
)
has dimension
-
t
. In this paper we consider the case
t
>
0
. Then the locus
W
d
̲
,
k
of all complete intersections as above containing a
k
-dimensional linear subspace is irreducible and turns out to have codimension
t
in the parameter space of all complete intersections with the given multi-degree. Moreover, we prove that for general
[
Y
]
∈
W
d
̲
,
k
the scheme
F
k
(
Y
)
is zero-dimensional of length one. This implies that
W
d
̲
,
k
is rational. |
---|---|
ISSN: | 0046-5755 1572-9168 |
DOI: | 10.1007/s10711-019-00452-2 |