Likelihood-based strategies for estimating unknown parameters and predicting missing data in the simultaneous autoregressive model
We attempt a three-stage comparison of several strategies for estimating parameters and predicting data in the simultaneous autoregressive model, which is a regression model with spatial autocorrelation in the disturbance between locations as the unit of observation. These strategies differ accordin...
Gespeichert in:
Veröffentlicht in: | Journal of geographical systems 2020, Vol.22 (1), p.143-176 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We attempt a three-stage comparison of several strategies for estimating parameters and predicting data in the simultaneous autoregressive model, which is a regression model with spatial autocorrelation in the disturbance between locations as the unit of observation. These strategies differ according to the formulation of the log-likelihood function containing a parametric weight matrix. In the first stage, a chain of logical reasoning is used to obtain theoretical findings by assuming that the data generating model and the data fitting model coincide. We consider the possibility that a subset of locations may be included in neither the parameter estimation nor the data prediction. In the second stage, a series of Monte Carlo experiments are conducted to supplement the theoretical comparison by considering also a mismatch between the two models. The prevalent strategy is defined as an approach that is not based on the exact log-likelihood function, regardless of the setting. The use of this strategy indicates that the parameter estimators do not reflect the mutual connection between all the locations included in the prediction. In the third stage, an empirical comparison is made to confirm the findings from the experimental comparison by using data observed in the real world. We conclude that the reasonable choice is not the prevalent strategy, but a strategy that can be defined as an approach based on the exact log-likelihood function, depending on the setting. The reasonable strategy tailors the parameter estimators to suit the mutual connection between all the locations included in the prediction. |
---|---|
ISSN: | 1435-5930 1435-5949 |
DOI: | 10.1007/s10109-019-00316-z |