Bipartite Perfect Matching as a Real Polynomial

We obtain a description of the Bipartite Perfect Matching decision problem as a multilinear polynomial over the Reals. We show that it has full degree and \((1-o_n(1))\cdot 2^{n^2}\) monomials with non-zero coefficients. In contrast, we show that in the dual representation (switching the roles of 0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-02
Hauptverfasser: Gal Beniamini, Nisan, Noam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain a description of the Bipartite Perfect Matching decision problem as a multilinear polynomial over the Reals. We show that it has full degree and \((1-o_n(1))\cdot 2^{n^2}\) monomials with non-zero coefficients. In contrast, we show that in the dual representation (switching the roles of 0 and 1) the number of monomials is only exponential in \(\Theta(n \log n)\). Our proof relies heavily on the fact that the lattice of graphs which are "matching-covered" is Eulerian.
ISSN:2331-8422