Bipartite Perfect Matching as a Real Polynomial
We obtain a description of the Bipartite Perfect Matching decision problem as a multilinear polynomial over the Reals. We show that it has full degree and \((1-o_n(1))\cdot 2^{n^2}\) monomials with non-zero coefficients. In contrast, we show that in the dual representation (switching the roles of 0...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain a description of the Bipartite Perfect Matching decision problem as a multilinear polynomial over the Reals. We show that it has full degree and \((1-o_n(1))\cdot 2^{n^2}\) monomials with non-zero coefficients. In contrast, we show that in the dual representation (switching the roles of 0 and 1) the number of monomials is only exponential in \(\Theta(n \log n)\). Our proof relies heavily on the fact that the lattice of graphs which are "matching-covered" is Eulerian. |
---|---|
ISSN: | 2331-8422 |