Choreographies in the discrete nonlinear Schrödinger equations

We study periodic solutions of the discrete nonlinear Schrödinger equation (DNLSE) that bifurcate from a symmetric polygonal relative equilibrium containing n sites. With specialized numerical continuation techniques and a varying physically relevant parameter we can locate interesting orbits, inclu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2018-09, Vol.227 (5-6), p.615-624
Hauptverfasser: Calleja, Renato, Doedel, Eusebius, García-Azpeitia, Carlos, Pando L., Carlos L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study periodic solutions of the discrete nonlinear Schrödinger equation (DNLSE) that bifurcate from a symmetric polygonal relative equilibrium containing n sites. With specialized numerical continuation techniques and a varying physically relevant parameter we can locate interesting orbits, including infinitely many choreographies. Many of the orbits that correspond to choreographies are stable, as indicated by Floquet multipliers that are extracted as part of the numerical continuation scheme, and as verified a posteriori by simple numerical integration. We discuss the physical relevance and the implications of our results.
ISSN:1951-6355
1951-6401
DOI:10.1140/epjst/e2018-00135-x