Choreographies in the discrete nonlinear Schrödinger equations
We study periodic solutions of the discrete nonlinear Schrödinger equation (DNLSE) that bifurcate from a symmetric polygonal relative equilibrium containing n sites. With specialized numerical continuation techniques and a varying physically relevant parameter we can locate interesting orbits, inclu...
Gespeichert in:
Veröffentlicht in: | The European physical journal. ST, Special topics Special topics, 2018-09, Vol.227 (5-6), p.615-624 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study periodic solutions of the discrete nonlinear Schrödinger equation (DNLSE) that bifurcate from a symmetric polygonal relative equilibrium containing
n
sites. With specialized numerical continuation techniques and a varying physically relevant parameter we can locate interesting orbits, including infinitely many choreographies. Many of the orbits that correspond to choreographies are stable, as indicated by Floquet multipliers that are extracted as part of the numerical continuation scheme, and as verified a posteriori by simple numerical integration. We discuss the physical relevance and the implications of our results. |
---|---|
ISSN: | 1951-6355 1951-6401 |
DOI: | 10.1140/epjst/e2018-00135-x |