First-order least-squares method for the obstacle problem

We define and analyse a least-squares finite element method for a first-order reformulation of the obstacle problem. Moreover, we derive variational inequalities that are based on similar but non-symmetric bilinear forms. A priori error estimates including the case of non-conforming convex sets are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2020, Vol.144 (1), p.55-88
1. Verfasser: Führer, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define and analyse a least-squares finite element method for a first-order reformulation of the obstacle problem. Moreover, we derive variational inequalities that are based on similar but non-symmetric bilinear forms. A priori error estimates including the case of non-conforming convex sets are given and optimal convergence rates are shown for the lowest-order case. We provide a posteriori bounds that can be used as error indicators in an adaptive algorithm. Numerical studies are presented.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-019-01084-0