First-order least-squares method for the obstacle problem
We define and analyse a least-squares finite element method for a first-order reformulation of the obstacle problem. Moreover, we derive variational inequalities that are based on similar but non-symmetric bilinear forms. A priori error estimates including the case of non-conforming convex sets are...
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2020, Vol.144 (1), p.55-88 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define and analyse a least-squares finite element method for a first-order reformulation of the obstacle problem. Moreover, we derive variational inequalities that are based on similar but non-symmetric bilinear forms. A priori error estimates including the case of non-conforming convex sets are given and optimal convergence rates are shown for the lowest-order case. We provide a posteriori bounds that can be used as error indicators in an adaptive algorithm. Numerical studies are presented. |
---|---|
ISSN: | 0029-599X 0945-3245 |
DOI: | 10.1007/s00211-019-01084-0 |