Volume Comparison of Conformally Compact Manifolds with Scalar Curvature R ≥ −n (n − 1)
In this paper, we use the normalized Ricci–DeTurk flow to prove a stability result for strictly stable conformally compact Einstein manifolds. As an application, we show a local volume comparison of conformally compact manifolds with scalar curvature R ≥ − n ( n − 1) and also the rigidity result wh...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2016-04, Vol.17 (4), p.953-977 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 977 |
---|---|
container_issue | 4 |
container_start_page | 953 |
container_title | Annales Henri Poincaré |
container_volume | 17 |
creator | Hu, Xue Ji, Dandan Shi, Yuguang |
description | In this paper, we use the normalized Ricci–DeTurk flow to prove a stability result for strictly stable conformally compact Einstein manifolds. As an application, we show a local volume comparison of conformally compact manifolds with scalar curvature
R
≥ −
n
(
n
− 1) and also the rigidity result when certain relative volume is zero. |
doi_str_mv | 10.1007/s00023-015-0411-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2343277387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343277387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-ee303a1b46442f4ad75b0f489453e43c4662d8d86ab6f439edc87c78f05e386d3</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYsoOI4-gLuAG11Uk9w0SZdS_IMRwb-lIdMmWmmbMWmVeQPd-gRufBEfZZ7EDhVduTr3cs85F74o2iZ4n2AsDgLGmEKMSRJjRkgMK9GIMMpizDlZ_Z1BrEcbITxiTKiEdBTd3bqqqw3KXD3TvgyuQc72W2Odr3VVzYdL3qJz3ZTWVUVAL2X7gK5yXWmPss4_67bzBl1-fSzePtHi9b1Bu81SEdnbjNasroLZ-tFxdHN8dJ2dxpOLk7PscBLnkKRtbAxg0GTKOGPUMl2IZIotkylLwDDIGee0kIXkesotg9QUuRS5kBYnBiQvYBztDL0z7546E1r16Drf9C8VBQZUCJCid5HBlXsXgjdWzXxZaz9XBKslRjVgVD1GtcSooM_QIRN6b3Nv_F_z_6Fv68p25Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343277387</pqid></control><display><type>article</type><title>Volume Comparison of Conformally Compact Manifolds with Scalar Curvature R ≥ −n (n − 1)</title><source>SpringerNature Journals</source><creator>Hu, Xue ; Ji, Dandan ; Shi, Yuguang</creator><creatorcontrib>Hu, Xue ; Ji, Dandan ; Shi, Yuguang</creatorcontrib><description>In this paper, we use the normalized Ricci–DeTurk flow to prove a stability result for strictly stable conformally compact Einstein manifolds. As an application, we show a local volume comparison of conformally compact manifolds with scalar curvature
R
≥ −
n
(
n
− 1) and also the rigidity result when certain relative volume is zero.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-015-0411-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classical and Quantum Gravitation ; Curvature ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Flow stability ; Manifolds ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Annales Henri Poincaré, 2016-04, Vol.17 (4), p.953-977</ispartof><rights>Springer Basel 2015</rights><rights>2015© Springer Basel 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-ee303a1b46442f4ad75b0f489453e43c4662d8d86ab6f439edc87c78f05e386d3</citedby><cites>FETCH-LOGICAL-c359t-ee303a1b46442f4ad75b0f489453e43c4662d8d86ab6f439edc87c78f05e386d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00023-015-0411-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00023-015-0411-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hu, Xue</creatorcontrib><creatorcontrib>Ji, Dandan</creatorcontrib><creatorcontrib>Shi, Yuguang</creatorcontrib><title>Volume Comparison of Conformally Compact Manifolds with Scalar Curvature R ≥ −n (n − 1)</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><description>In this paper, we use the normalized Ricci–DeTurk flow to prove a stability result for strictly stable conformally compact Einstein manifolds. As an application, we show a local volume comparison of conformally compact manifolds with scalar curvature
R
≥ −
n
(
n
− 1) and also the rigidity result when certain relative volume is zero.</description><subject>Classical and Quantum Gravitation</subject><subject>Curvature</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Flow stability</subject><subject>Manifolds</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYsoOI4-gLuAG11Uk9w0SZdS_IMRwb-lIdMmWmmbMWmVeQPd-gRufBEfZZ7EDhVduTr3cs85F74o2iZ4n2AsDgLGmEKMSRJjRkgMK9GIMMpizDlZ_Z1BrEcbITxiTKiEdBTd3bqqqw3KXD3TvgyuQc72W2Odr3VVzYdL3qJz3ZTWVUVAL2X7gK5yXWmPss4_67bzBl1-fSzePtHi9b1Bu81SEdnbjNasroLZ-tFxdHN8dJ2dxpOLk7PscBLnkKRtbAxg0GTKOGPUMl2IZIotkylLwDDIGee0kIXkesotg9QUuRS5kBYnBiQvYBztDL0z7546E1r16Drf9C8VBQZUCJCid5HBlXsXgjdWzXxZaz9XBKslRjVgVD1GtcSooM_QIRN6b3Nv_F_z_6Fv68p25Q</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Hu, Xue</creator><creator>Ji, Dandan</creator><creator>Shi, Yuguang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160401</creationdate><title>Volume Comparison of Conformally Compact Manifolds with Scalar Curvature R ≥ −n (n − 1)</title><author>Hu, Xue ; Ji, Dandan ; Shi, Yuguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-ee303a1b46442f4ad75b0f489453e43c4662d8d86ab6f439edc87c78f05e386d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Curvature</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Flow stability</topic><topic>Manifolds</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xue</creatorcontrib><creatorcontrib>Ji, Dandan</creatorcontrib><creatorcontrib>Shi, Yuguang</creatorcontrib><collection>CrossRef</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xue</au><au>Ji, Dandan</au><au>Shi, Yuguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volume Comparison of Conformally Compact Manifolds with Scalar Curvature R ≥ −n (n − 1)</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>17</volume><issue>4</issue><spage>953</spage><epage>977</epage><pages>953-977</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>In this paper, we use the normalized Ricci–DeTurk flow to prove a stability result for strictly stable conformally compact Einstein manifolds. As an application, we show a local volume comparison of conformally compact manifolds with scalar curvature
R
≥ −
n
(
n
− 1) and also the rigidity result when certain relative volume is zero.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-015-0411-3</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-0637 |
ispartof | Annales Henri Poincaré, 2016-04, Vol.17 (4), p.953-977 |
issn | 1424-0637 1424-0661 |
language | eng |
recordid | cdi_proquest_journals_2343277387 |
source | SpringerNature Journals |
subjects | Classical and Quantum Gravitation Curvature Dynamical Systems and Ergodic Theory Elementary Particles Flow stability Manifolds Mathematical and Computational Physics Mathematical Methods in Physics Physics Physics and Astronomy Quantum Field Theory Quantum Physics Relativity Theory Theoretical |
title | Volume Comparison of Conformally Compact Manifolds with Scalar Curvature R ≥ −n (n − 1) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A53%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volume%20Comparison%20of%20Conformally%20Compact%20Manifolds%20with%20Scalar%20Curvature%20R%C2%A0%E2%89%A5%20%E2%88%92n%20(n%20%E2%88%92%201)&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Hu,%20Xue&rft.date=2016-04-01&rft.volume=17&rft.issue=4&rft.spage=953&rft.epage=977&rft.pages=953-977&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-015-0411-3&rft_dat=%3Cproquest_cross%3E2343277387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343277387&rft_id=info:pmid/&rfr_iscdi=true |