Volume Comparison of Conformally Compact Manifolds with Scalar Curvature R ≥ −n (n − 1)

In this paper, we use the normalized Ricci–DeTurk flow to prove a stability result for strictly stable conformally compact Einstein manifolds. As an application, we show a local volume comparison of conformally compact manifolds with scalar curvature R  ≥ − n ( n − 1) and also the rigidity result wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2016-04, Vol.17 (4), p.953-977
Hauptverfasser: Hu, Xue, Ji, Dandan, Shi, Yuguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we use the normalized Ricci–DeTurk flow to prove a stability result for strictly stable conformally compact Einstein manifolds. As an application, we show a local volume comparison of conformally compact manifolds with scalar curvature R  ≥ − n ( n − 1) and also the rigidity result when certain relative volume is zero.
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-015-0411-3