Volume Comparison of Conformally Compact Manifolds with Scalar Curvature R ≥ −n (n − 1)
In this paper, we use the normalized Ricci–DeTurk flow to prove a stability result for strictly stable conformally compact Einstein manifolds. As an application, we show a local volume comparison of conformally compact manifolds with scalar curvature R ≥ − n ( n − 1) and also the rigidity result wh...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2016-04, Vol.17 (4), p.953-977 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we use the normalized Ricci–DeTurk flow to prove a stability result for strictly stable conformally compact Einstein manifolds. As an application, we show a local volume comparison of conformally compact manifolds with scalar curvature
R
≥ −
n
(
n
− 1) and also the rigidity result when certain relative volume is zero. |
---|---|
ISSN: | 1424-0637 1424-0661 |
DOI: | 10.1007/s00023-015-0411-3 |