Equitable partition of graphs into induced linear forests
It is proved that the vertex set of any simple graph G can be equitably partitioned into k subsets for any integer k ≥ max { ⌈ Δ ( G ) + 1 2 ⌉ , ⌈ | G | 4 ⌉ } so that each of them induces a linear forest.
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial optimization 2020-02, Vol.39 (2), p.581-588 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is proved that the vertex set of any simple graph
G
can be equitably partitioned into
k
subsets for any integer
k
≥
max
{
⌈
Δ
(
G
)
+
1
2
⌉
,
⌈
|
G
|
4
⌉
}
so that each of them induces a linear forest. |
---|---|
ISSN: | 1382-6905 1573-2886 |
DOI: | 10.1007/s10878-019-00498-8 |