Long-Time Dynamics of the Perturbed Schrödinger Equation on Negatively Curved Surfaces
We consider perturbations of the semiclassical Schrödinger equation on a compact Riemannian surface with constant negative curvature and without boundary. We show that, for scales of times which are logarithmic in the size of the perturbation, the solutions associated to initial data in a small spec...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2016-08, Vol.17 (8), p.1955-1999 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider perturbations of the semiclassical Schrödinger equation on a compact Riemannian surface with constant negative curvature and without boundary. We show that, for scales of times which are logarithmic in the size of the perturbation, the solutions associated to initial data in a small spectral window become equidistributed in the semiclassical limit. As an application of our method, we also derive some properties of the quantum Loschmidt echo below and beyond the Ehrenfest time for initial data in a small spectral window. |
---|---|
ISSN: | 1424-0637 1424-0661 |
DOI: | 10.1007/s00023-016-0464-y |