A Subspace Modified Broyden–Fletcher–Goldfarb–Shanno Method for B-eigenvalues of Symmetric Tensors

In this paper, finding the B -eigenvalues of a symmetric tensor is equivalent to solving a least-square optimization problem. Based on the subspace technique, a trust region algorithm is presented. In trust region subproblem, the modified Broyden–Fletcher–Goldfarb–Shanno formula is adopted to genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2020-02, Vol.184 (2), p.419-432
Hauptverfasser: Cao, Mingyuan, Huang, Qingdao, Li, Chaoqian, Yang, Yueting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, finding the B -eigenvalues of a symmetric tensor is equivalent to solving a least-square optimization problem. Based on the subspace technique, a trust region algorithm is presented. In trust region subproblem, the modified Broyden–Fletcher–Goldfarb–Shanno formula is adopted to generate the approximated matrices. In order to reduce the computation cost in each iteration, the quadratic subproblem is constructed in a subspace with lower dimension. Theoretic analysis of the given algorithm and convergence properties of the optimal solutions are established. Numerical results show that this method is efficient.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-019-01617-5