The Code-Theoretic Axiom: The Third Ontology
A logical physical ontology is code theory, wherein reality is neither deterministic nor random. In light of Conway and Kochen’s free will theorem [The free will theorem, Found. Phys. 36(10) (2006) 1441–1473] and strong free will theorem [The strong free will theorem, Not. Am. Math. Soc. 56(2) (2009...
Gespeichert in:
Veröffentlicht in: | Reports in Advances of Physical Sciences 2019-03, Vol.3 (1), p.1950002-1950002-25 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A logical physical ontology is code theory, wherein reality is neither deterministic nor random. In light of Conway and Kochen’s free will theorem [The free will theorem, Found. Phys. 36(10) (2006) 1441–1473] and strong free will theorem [The strong free will theorem, Not. Am. Math. Soc. 56(2) (2009) 226–232], we discuss the plausibility of a third axiomatic option — geometric language; the code-theoretic axiom. We suggest that freewill choices at the syntactically-free steps of a geometric language of spacetime form the code-theoretic substrate upon which particle and gravitational physics emerge. |
---|---|
ISSN: | 2424-9424 2529-752X |
DOI: | 10.1142/S2424942419500026 |