How much of monthly mean precipitation variability over global land is associated with SST anomalies?

The role of sea surface temperature (SST) in determining the predictability of monthly mean precipitation over the global land is assessed by analyzing the Atmospheric Model Intercomparison Project (AMIP)-like simulations forced by observed SST, which provides a benchmark for the impact of SST on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2020, Vol.54 (1-2), p.701-712
Hauptverfasser: Hu, Zeng-Zhen, Kumar, Arun, Jha, Bhaskar, Huang, Boyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The role of sea surface temperature (SST) in determining the predictability of monthly mean precipitation over the global land is assessed by analyzing the Atmospheric Model Intercomparison Project (AMIP)-like simulations forced by observed SST, which provides a benchmark for the impact of SST on the precipitation. The correlations of monthly mean precipitation anomalies between the ensemble mean of the AMIP simulations and observations are dominated by positive values with maxima around 0.3–0.4 in the tropical North Africa along 15° N and northeastern Brazil. The SST forcing for the precipitation variability is mainly associated with the El Niño-Southern Oscillation (ENSO) and in the tropical Indian Ocean. Statistically, positive and negative SST anomalies associated with an ENSO cycle have a comparable influence on precipitation variability over the land. In addition to the spatial variations, the precipitation responses to SST also vary with season and decade. Pattern correlations are larger in boreal winter than in boreal summer in the Northern Hemisphere, and relatively larger in April-June and September–November in the Southern Hemisphere. The global average of correlation is lower during 1957–1980 and 2000–2018, and higher in between. The interdecadal fluctuation of the pattern correlations is coherent with the interdecadal variation of the amplitude of ENSO.
ISSN:0930-7575
1432-0894
DOI:10.1007/s00382-019-05023-5