A gain-of-functional screen identifies the Hippo pathway as a central mediator of receptor tyrosine kinases during tumorigenesis
The Hippo pathway has emerged as a key signaling pathway that regulates various biological functions. Dysregulation of the Hippo pathway has been implicated in a broad range of human cancer types. While a number of stimuli affecting the Hippo pathway have been reported, its upstream kinase and extra...
Gespeichert in:
Veröffentlicht in: | Oncogene 2020-01, Vol.39 (2), p.334-355 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Hippo pathway has emerged as a key signaling pathway that regulates various biological functions. Dysregulation of the Hippo pathway has been implicated in a broad range of human cancer types. While a number of stimuli affecting the Hippo pathway have been reported, its upstream kinase and extracellular regulators remain largely unknown. Here we performed the first comprehensive gain-of-functional screen for receptor tyrosine kinases (RTKs) regulating the Hippo pathway using an RTK overexpression library and a Hippo signaling activity biosensor. Surprisingly, we found that the majority of RTKs could regulate the Hippo signaling activity. We further characterized several of these novel relationships [TAM family members (
T
YRO3,
A
XL,
M
ETRK), RET, and FGFR family members (FGFR1 and FGFR2)] and found that the Hippo effectors YAP/TAZ are central mediators of the tumorigenic phenotypes (e.g., increased cell proliferation, transformation, increased cell motility, and angiogenesis) induced by these RTKs and their extracellular ligands (Gas6, GDNF, and FGF) through either PI3K or MAPK signaling pathway. Significantly, we identify FGFR, RET, and MERTK as the first RTKs that can directly interact with and phosphorylate YAP/TAZ at multiple tyrosine residues independent of upstream Hippo signaling, thereby activating their functions in tumorigenesis. In conclusion, we have identified several novel kinases and extracellular stimuli regulating the Hippo pathway. Our findings also highlight the pivotal role of the Hippo pathway in mediating Gas6/GDNF/FGF-TAM/RET/FGFR-MAPK/PI3K signaling during tumorigenesis and provide a compelling rationale for targeting YAP/TAZ in RTK-driven cancers. |
---|---|
ISSN: | 0950-9232 1476-5594 |
DOI: | 10.1038/s41388-019-0988-y |