Improved mechanical properties of 3D-printed SiC/PLA composite parts by microwave heating

Polylactic acid (PLA) filament 3D parts printed by fused deposition modeling (FDM) have poor mechanical properties because of weak fusion interfaces. This article shows that SiC-coated PLA filaments are effective means to increase mechanical performance of PLA composites that are microwave heated. N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2019-10, Vol.34 (20), p.3412-3419
Hauptverfasser: Wang, Yanqing, Liu, Zengguang, Gu, Huwei, Cui, Chunzhi, Hao, Jingbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polylactic acid (PLA) filament 3D parts printed by fused deposition modeling (FDM) have poor mechanical properties because of weak fusion interfaces. This article shows that SiC-coated PLA filaments are effective means to increase mechanical performance of PLA composites that are microwave heated. Numerical calculations on temperature-rising characteristics and temperature distribution of the interface in the microwave field are shown. 3D-printed specimens of PLA/SiC composites were printed by FDM and heated in a microwave. The experiments show the SiC/PLA composite filaments have better temperature-rising characteristics and temperature distribution at 185 °C for 60 s in the microwave field, and this enabled the 3D-printed specimens to achieve in situ remelting on the interface and increased interface bonding between PLA filaments. The SiC/PLA composite specimens heated using microwave increased by 51% in tensile strength, 42% in tensile modulus, and 18.7% in interlayer breaking stress relative to PLA. These results provided a new approach for the improvement of FDM workpiece strength.
ISSN:0884-2914
2044-5326
DOI:10.1557/jmr.2019.296