Matrices in A(R,S) with minimum t-term ranks
Let R and S be two sequences of nonnegative integers in nonincreasing order which have the same sum, and let A(R,S) be the class of all (0,1)-matrices which have row sums given by R and column sums given by S. For a positive integer t, the t-term rank of a (0,1)-matrix A is defined as the maximum nu...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2020-02, Vol.586, p.239-261 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let R and S be two sequences of nonnegative integers in nonincreasing order which have the same sum, and let A(R,S) be the class of all (0,1)-matrices which have row sums given by R and column sums given by S. For a positive integer t, the t-term rank of a (0,1)-matrix A is defined as the maximum number of 1's in A with at most one 1 in each column and at most t 1's in each row. In this paper, we address conditions for the existence of a matrix in A(R,S) that realizes all the minimum t-term ranks, for t≥1. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2019.10.010 |