Representation and factorization theorems for almost-Lp-spaces
We extend the notions of p-convexity and p-concavity for Banach ideals of measurable functions following an asymptotic procedure. We prove a representation theorem for the spaces satisfying both properties as the one that works for the classical case: each almost p-convex and almost p-concave space...
Gespeichert in:
Veröffentlicht in: | Indagationes mathematicae 2019-09, Vol.30 (5), p.930-942 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the notions of p-convexity and p-concavity for Banach ideals of measurable functions following an asymptotic procedure. We prove a representation theorem for the spaces satisfying both properties as the one that works for the classical case: each almost p-convex and almost p-concave space is order isomorphic to an almost-Lp-space. The class of almost-Lp-spaces contains, in particular, direct sums of (infinitely many) Lp-spaces with different norms, that are not in general p-convex – nor p-concave –. We also analyze in this context the extension of the Maurey–Rosenthal factorization theorem that works for p-concave operators acting in p-convex spaces. In this way we provide factorization results that allow to deal with more general factorization spaces than Lp-spaces. |
---|---|
ISSN: | 0019-3577 1872-6100 |
DOI: | 10.1016/j.indag.2019.04.001 |