Cellular homology of real flag manifolds

Let FΘ=G∕PΘ be a generalized flag manifold, where G is a real non-compact semi-simple Lie group and PΘ a parabolic subgroup. A classical result says the Schubert cells, which are the closure of the Bruhat cells, endow FΘ with a cellular CW structure. In this paper we exhibit explicit parametrization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indagationes mathematicae 2019-09, Vol.30 (5), p.745-772
Hauptverfasser: Rabelo, Lonardo, San Martin, Luiz A.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let FΘ=G∕PΘ be a generalized flag manifold, where G is a real non-compact semi-simple Lie group and PΘ a parabolic subgroup. A classical result says the Schubert cells, which are the closure of the Bruhat cells, endow FΘ with a cellular CW structure. In this paper we exhibit explicit parametrizations of the Schubert cells by closed balls (cubes) in Rn and use them to compute the boundary operator ∂ for the cellular homology. We recover the result obtained by Kocherlakota [1995], in the setting of Morse Homology, that the coefficients of ∂ are 0 or ±2 (so that Z2-homology is freely generated by the cells). In particular, the formula given here is more refined in the sense that the ambiguity of signals in the Morse–Witten complex is solved.
ISSN:0019-3577
1872-6100
DOI:10.1016/j.indag.2019.05.001