Hydroelastic waves propagating in an ice-covered channel
The hydroelastic waves in a channel covered by an ice sheet, without or with crack and subject to various edge constraints at channel banks, are investigated based on the linearized velocity potential theory for the fluid domain and the thin-plate elastic theory for the ice sheet. An effective analy...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2020-03, Vol.886, Article A18 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hydroelastic waves in a channel covered by an ice sheet, without or with crack and subject to various edge constraints at channel banks, are investigated based on the linearized velocity potential theory for the fluid domain and the thin-plate elastic theory for the ice sheet. An effective analytical solution procedure is developed through expanding the velocity potential and the fourth derivative of the ice deflection to a series of cosine functions with unknown coefficients. The latter are integrated to obtain the expression for the deflection, which involves four constants. The procedure is then extended to the case with a longitudinal crack in the ice sheet by using the Dirac delta function and its derivatives at the crack in the dynamic equation, with unknown jumps of deflection and slope at the crack. Conditions at the edges and crack are then imposed, from which a system of linear equations for the unknowns is established. From this, the dispersion relation between the wave frequency and wavenumber is found, as well as the natural frequency of the channel. Extensive results are then provided for wave celerity, wave profiles and strain in the ice sheet. In-depth discussions are made on the effects of the edge condition, and the crack. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2019.1042 |