Represented Value Function Approach for Large Scale Multi Agent Reinforcement Learning
In this paper, we consider the problem of large scale multi agent reinforcement learning. Firstly, we studied the representation problem of the pairwise value function to reduce the complexity of the interactions among agents. Secondly, we adopt a l2-norm trick to ensure the trivial term of the appr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-01 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the problem of large scale multi agent reinforcement learning. Firstly, we studied the representation problem of the pairwise value function to reduce the complexity of the interactions among agents. Secondly, we adopt a l2-norm trick to ensure the trivial term of the approximated value function is bounded. Thirdly, experimental results on battle game demonstrate the effectiveness of the proposed approach. |
---|---|
ISSN: | 2331-8422 |