On the structure of quantum vertex algebras

A definition of a quantum vertex algebra, which is a deformation of a vertex algebra, was proposed by Etingof and Kazhdan in 1998 [Sel. Math. 6(1), 105–130 (2000)]. In a nutshell, a quantum vertex algebra is a braided state-field correspondence that satisfies associativity and braided locality axiom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2020-01, Vol.61 (1)
Hauptverfasser: De Sole, Alberto, Gardini, Matteo, Kac, Victor G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A definition of a quantum vertex algebra, which is a deformation of a vertex algebra, was proposed by Etingof and Kazhdan in 1998 [Sel. Math. 6(1), 105–130 (2000)]. In a nutshell, a quantum vertex algebra is a braided state-field correspondence that satisfies associativity and braided locality axioms. We develop a structure theory of quantum vertex algebras, parallel to that of vertex algebras. In particular, we introduce braided n-products for a braided state-field correspondence and prove for quantum vertex algebras a version of the Borcherds identity.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.5121626