On the structure of quantum vertex algebras
A definition of a quantum vertex algebra, which is a deformation of a vertex algebra, was proposed by Etingof and Kazhdan in 1998 [Sel. Math. 6(1), 105–130 (2000)]. In a nutshell, a quantum vertex algebra is a braided state-field correspondence that satisfies associativity and braided locality axiom...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2020-01, Vol.61 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A definition of a quantum vertex algebra, which is a deformation of a vertex algebra, was proposed by Etingof and Kazhdan in 1998 [Sel. Math. 6(1), 105–130 (2000)]. In a nutshell, a quantum vertex algebra is a braided state-field correspondence that satisfies associativity and braided locality axioms. We develop a structure theory of quantum vertex algebras, parallel to that of vertex algebras. In particular, we introduce braided n-products for a braided state-field correspondence and prove for quantum vertex algebras a version of the Borcherds identity. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.5121626 |