Leading-particle suppression in high energy nucleus-nucleus collisions

Parton energy loss effects in heavy-ion collisions are studied with the Monte Carlo program PQM (Parton Quenching Model) constructed using the BDMPS quenching weights and a realistic collision geometry. The merit of the approach is that it contains only one free parameter that is tuned to the high-p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2005-01, Vol.38 (4), p.461-474
Hauptverfasser: Dainese, A, Loizides, C, Paic, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parton energy loss effects in heavy-ion collisions are studied with the Monte Carlo program PQM (Parton Quenching Model) constructed using the BDMPS quenching weights and a realistic collision geometry. The merit of the approach is that it contains only one free parameter that is tuned to the high-pt nuclear modification factor measured in central Au-Au collisions at \(\sqrt{s_{\rm NN}} = 200\) GeV. Once tuned, the model is consistently applied to all the high-pt observables at 200 GeV: the centrality evolution of the nuclear modification factor, the suppression of the away-side jet-like correlations, and the azimuthal anisotropies for these observables. Predictions for the leading-particle suppression at nucleon-nucleon centre-of-mass energies of 62.4 and 5500 GeV are presented. The limits of the eikonal approximation in the BDMPS approach, when applied to finite-energy partons, are discussed.
ISSN:1434-6044
1434-6052
DOI:10.1140/epjc/s2004-02077-x