Chemical interaction and hydraulic performance of geosynthetic clay liners isothermally hydrated from silty sand subgrade
The effects of the silt aggregation, compaction density, and water content of the subgrade on the hydration of five different geosynthetic clay liner (GCL) products is reported based on a series of laboratory column experiments conducted over a six-year period. GCLs meeting typical specifications in...
Gespeichert in:
Veröffentlicht in: | Geotextiles and geomembranes 2019-12, Vol.47 (6), p.740-754 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of the silt aggregation, compaction density, and water content of the subgrade on the hydration of five different geosynthetic clay liner (GCL) products is reported based on a series of laboratory column experiments conducted over a six-year period. GCLs meeting typical specifications in terms of minimum hydraulic conductivity and swell index are hydrated to equilibrium from the same subgrade soil with sufficient cations to cause cation exchange during hydration. It is then shown that the GCL bentonite granularity and GCL structure can have a significant (~four orders of magnitude) effect on hydraulic conductivity under the same test conditions (from 8 × 10−12 m/s for one GCL to 6 × 10−8 m/s for another GCL product). The effect of subgrade water content on the hydraulic performance of GCLs are not self-evident and quite dependent on the bentonite granularity, GCL structure, and permeant. Varying the subgrade water content from 5 to 16% and allowing the GCL to hydrate to equilibrium before permeation led to up to 5-fold difference in hydraulic conductivity when permeated with tap water and up to 60-fold difference when the same product is permeated with synthetic municipal solid waste leachate. When permeated with synthetic leachate, increasing stress from 70 kPa to 150 kPa led to a slight (average 37%; maximum 2.7-fold) decrease in hydraulic conductivity due to a decrease in bulk void ratio. It is shown that hydraulic conductivity is lower for GCLs with a scrim-reinforced geotextile, and/or with finer bentonite. It is shown that selecting a GCL based on the initial hydraulic conductivity and swell index in a manufacturers product sheet provides no assurance of good performance in field applications and it is recommended that designers pay more attention to selection of a GCL and preparation of the subgrade for important projects. |
---|---|
ISSN: | 0266-1144 1879-3584 |
DOI: | 10.1016/j.geotexmem.2019.103486 |