WEDeepT3: predicting type III secreted effectors based on word embedding and deep learning

Background: The type III secreted effectors (T3SEs) are one of the indispensable proteins in the growth and reproduction of Gram-negative bacteria. In particular, the pathogenesis of Gram-negative bacteria depends on the type III secreted effectors, and by injecting T3SEs into a host cell, the host...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative biology 2019-12, Vol.7 (4), p.293-301
Hauptverfasser: Fu, Xiaofeng, Yang, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: The type III secreted effectors (T3SEs) are one of the indispensable proteins in the growth and reproduction of Gram-negative bacteria. In particular, the pathogenesis of Gram-negative bacteria depends on the type III secreted effectors, and by injecting T3SEs into a host cell, the host cell's immunity can be destroyed. The high diversity of T3SE sequences and the lack of defined secretion signals make it difficult to identify and predict. Moreover, the related study of the pathological system associated with T3SE remains a hot topic in bioinformatics. Some computational tools have been developed to meet the growing demand for the recognition of T3SEs and the studies of type III secretion systems (T3SS). Although these tools can help biological experiments in certain procedures, there is still room for improvement, even for the current best model, as the existing methods adopt hand-designed feature and traditional machine learning methods. Methods: In this study, we propose a powerful predictor based on deep learning methods, called WEDeepT3. Our work consists mainly of three key steps. First, we train word embedding vectors for protein sequences in a large-scale amino acid sequence database. Second, we combine the word vectors with traditional features extracted from protein sequences, like PSSM, to construct a more comprehensive feature representation. Finally, we construct a deep neural network model in the prediction of type III secreted effectors. Results: The feature representation of WEDeepT3 consists of both word embedding and position-specific features. Working together with convolutional neural networks, the new model achieves superior performance to the state-of-the-art methods, demonstrating the effectiveness of the new feature representation and the powerful learning ability of deep models. Conclusion: WEDeepT3 exploits both semantic information of k-mer fragments and evolutional information of protein sequences to accurately differentiate between T3SEs and non-T3SEs. WEDeepT3 is available at bcmi.sjtu.edu.cn/~yangyang/WEDeepT3.html.
ISSN:2095-4689
2095-4697
DOI:10.1007/s40484-019-0184-7