Patterns of primes in the Sato–Tate conjecture

Fix a non-CM elliptic curve E / Q , and let a E ( p ) = p + 1 - # E ( F p ) denote the trace of Frobenius at p . The Sato–Tate conjecture gives the limiting distribution μ ST of a E ( p ) / ( 2 p ) within [ - 1 , 1 ] . We establish bounded gaps for primes in the context of this distribution. More pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in number theory 2020, Vol.6 (1), Article 9
Hauptverfasser: Gillman, Nate, Kural, Michael, Pascadi, Alexandru, Peng, Junyao, Sah, Ashwin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Research in number theory
container_volume 6
creator Gillman, Nate
Kural, Michael
Pascadi, Alexandru
Peng, Junyao
Sah, Ashwin
description Fix a non-CM elliptic curve E / Q , and let a E ( p ) = p + 1 - # E ( F p ) denote the trace of Frobenius at p . The Sato–Tate conjecture gives the limiting distribution μ ST of a E ( p ) / ( 2 p ) within [ - 1 , 1 ] . We establish bounded gaps for primes in the context of this distribution. More precisely, given an interval I ⊆ [ - 1 , 1 ] , let p I , n denote the n th prime such that a E ( p ) / ( 2 p ) ∈ I . We show lim inf n → ∞ ( p I , n + m - p I , n ) < ∞ for all m ≥ 1 for “most” intervals, and in particular, for all I with μ ST ( I ) ≥ 0.36 . Furthermore, we prove a common generalization of our bounded gap result with the Green–Tao theorem. To obtain these results, we demonstrate a Bombieri–Vinogradov type theorem for Sato–Tate primes.
doi_str_mv 10.1007/s40993-019-0184-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2333963210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333963210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-562578cc21efd348557016dffddab350a013070b8e57b922b9bc81060183d1863</originalsourceid><addsrcrecordid>eNp1UM1KxDAQDqLgsu4DeCt4rk5mmjQ5yuIfLCi4nkOaprqLtmuSHrz5Dr6hT2KWCp48DDMw38_Mx9gph3MOUF_ECrSmErjOpapSHbAZkqRSCyEO8ywQ80bCMVvEuAXIM1WIOGPwYFPyoY_F0BW7sHnzsdj0RXrxxaNNw_fn19omX7ih33qXxuBP2FFnX6Nf_PY5e7q-Wi9vy9X9zd3yclU6lCqVQqKolXPIfddSpYSos2nbdW1rGxJggRPU0Cgv6kYjNrpxioPM91PLlaQ5O5t0d2F4H31MZjuMoc-WBolIS0IOGcUnlAtDjMF3Zv-DDR-Gg9lnY6ZsTM7G7LMxKnNw4sSM7Z99-FP-n_QD3QVk7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333963210</pqid></control><display><type>article</type><title>Patterns of primes in the Sato–Tate conjecture</title><source>SpringerLink Journals</source><creator>Gillman, Nate ; Kural, Michael ; Pascadi, Alexandru ; Peng, Junyao ; Sah, Ashwin</creator><creatorcontrib>Gillman, Nate ; Kural, Michael ; Pascadi, Alexandru ; Peng, Junyao ; Sah, Ashwin</creatorcontrib><description>Fix a non-CM elliptic curve E / Q , and let a E ( p ) = p + 1 - # E ( F p ) denote the trace of Frobenius at p . The Sato–Tate conjecture gives the limiting distribution μ ST of a E ( p ) / ( 2 p ) within [ - 1 , 1 ] . We establish bounded gaps for primes in the context of this distribution. More precisely, given an interval I ⊆ [ - 1 , 1 ] , let p I , n denote the n th prime such that a E ( p ) / ( 2 p ) ∈ I . We show lim inf n → ∞ ( p I , n + m - p I , n ) &lt; ∞ for all m ≥ 1 for “most” intervals, and in particular, for all I with μ ST ( I ) ≥ 0.36 . Furthermore, we prove a common generalization of our bounded gap result with the Green–Tao theorem. To obtain these results, we demonstrate a Bombieri–Vinogradov type theorem for Sato–Tate primes.</description><identifier>ISSN: 2522-0160</identifier><identifier>EISSN: 2363-9555</identifier><identifier>DOI: 10.1007/s40993-019-0184-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Curves ; Mathematics ; Mathematics and Statistics ; Number Theory ; Theorems</subject><ispartof>Research in number theory, 2020, Vol.6 (1), Article 9</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>2019© Springer Nature Switzerland AG 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-562578cc21efd348557016dffddab350a013070b8e57b922b9bc81060183d1863</cites><orcidid>0000-0001-9286-9165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40993-019-0184-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40993-019-0184-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gillman, Nate</creatorcontrib><creatorcontrib>Kural, Michael</creatorcontrib><creatorcontrib>Pascadi, Alexandru</creatorcontrib><creatorcontrib>Peng, Junyao</creatorcontrib><creatorcontrib>Sah, Ashwin</creatorcontrib><title>Patterns of primes in the Sato–Tate conjecture</title><title>Research in number theory</title><addtitle>Res. number theory</addtitle><description>Fix a non-CM elliptic curve E / Q , and let a E ( p ) = p + 1 - # E ( F p ) denote the trace of Frobenius at p . The Sato–Tate conjecture gives the limiting distribution μ ST of a E ( p ) / ( 2 p ) within [ - 1 , 1 ] . We establish bounded gaps for primes in the context of this distribution. More precisely, given an interval I ⊆ [ - 1 , 1 ] , let p I , n denote the n th prime such that a E ( p ) / ( 2 p ) ∈ I . We show lim inf n → ∞ ( p I , n + m - p I , n ) &lt; ∞ for all m ≥ 1 for “most” intervals, and in particular, for all I with μ ST ( I ) ≥ 0.36 . Furthermore, we prove a common generalization of our bounded gap result with the Green–Tao theorem. To obtain these results, we demonstrate a Bombieri–Vinogradov type theorem for Sato–Tate primes.</description><subject>Curves</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Theorems</subject><issn>2522-0160</issn><issn>2363-9555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UM1KxDAQDqLgsu4DeCt4rk5mmjQ5yuIfLCi4nkOaprqLtmuSHrz5Dr6hT2KWCp48DDMw38_Mx9gph3MOUF_ECrSmErjOpapSHbAZkqRSCyEO8ywQ80bCMVvEuAXIM1WIOGPwYFPyoY_F0BW7sHnzsdj0RXrxxaNNw_fn19omX7ih33qXxuBP2FFnX6Nf_PY5e7q-Wi9vy9X9zd3yclU6lCqVQqKolXPIfddSpYSos2nbdW1rGxJggRPU0Cgv6kYjNrpxioPM91PLlaQ5O5t0d2F4H31MZjuMoc-WBolIS0IOGcUnlAtDjMF3Zv-DDR-Gg9lnY6ZsTM7G7LMxKnNw4sSM7Z99-FP-n_QD3QVk7w</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Gillman, Nate</creator><creator>Kural, Michael</creator><creator>Pascadi, Alexandru</creator><creator>Peng, Junyao</creator><creator>Sah, Ashwin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9286-9165</orcidid></search><sort><creationdate>2020</creationdate><title>Patterns of primes in the Sato–Tate conjecture</title><author>Gillman, Nate ; Kural, Michael ; Pascadi, Alexandru ; Peng, Junyao ; Sah, Ashwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-562578cc21efd348557016dffddab350a013070b8e57b922b9bc81060183d1863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Curves</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gillman, Nate</creatorcontrib><creatorcontrib>Kural, Michael</creatorcontrib><creatorcontrib>Pascadi, Alexandru</creatorcontrib><creatorcontrib>Peng, Junyao</creatorcontrib><creatorcontrib>Sah, Ashwin</creatorcontrib><collection>CrossRef</collection><jtitle>Research in number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gillman, Nate</au><au>Kural, Michael</au><au>Pascadi, Alexandru</au><au>Peng, Junyao</au><au>Sah, Ashwin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterns of primes in the Sato–Tate conjecture</atitle><jtitle>Research in number theory</jtitle><stitle>Res. number theory</stitle><date>2020</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><artnum>9</artnum><issn>2522-0160</issn><eissn>2363-9555</eissn><abstract>Fix a non-CM elliptic curve E / Q , and let a E ( p ) = p + 1 - # E ( F p ) denote the trace of Frobenius at p . The Sato–Tate conjecture gives the limiting distribution μ ST of a E ( p ) / ( 2 p ) within [ - 1 , 1 ] . We establish bounded gaps for primes in the context of this distribution. More precisely, given an interval I ⊆ [ - 1 , 1 ] , let p I , n denote the n th prime such that a E ( p ) / ( 2 p ) ∈ I . We show lim inf n → ∞ ( p I , n + m - p I , n ) &lt; ∞ for all m ≥ 1 for “most” intervals, and in particular, for all I with μ ST ( I ) ≥ 0.36 . Furthermore, we prove a common generalization of our bounded gap result with the Green–Tao theorem. To obtain these results, we demonstrate a Bombieri–Vinogradov type theorem for Sato–Tate primes.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40993-019-0184-8</doi><orcidid>https://orcid.org/0000-0001-9286-9165</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2522-0160
ispartof Research in number theory, 2020, Vol.6 (1), Article 9
issn 2522-0160
2363-9555
language eng
recordid cdi_proquest_journals_2333963210
source SpringerLink Journals
subjects Curves
Mathematics
Mathematics and Statistics
Number Theory
Theorems
title Patterns of primes in the Sato–Tate conjecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterns%20of%20primes%20in%20the%20Sato%E2%80%93Tate%20conjecture&rft.jtitle=Research%20in%20number%20theory&rft.au=Gillman,%20Nate&rft.date=2020&rft.volume=6&rft.issue=1&rft.artnum=9&rft.issn=2522-0160&rft.eissn=2363-9555&rft_id=info:doi/10.1007/s40993-019-0184-8&rft_dat=%3Cproquest_cross%3E2333963210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333963210&rft_id=info:pmid/&rfr_iscdi=true