Patterns of primes in the Sato–Tate conjecture
Fix a non-CM elliptic curve E / Q , and let a E ( p ) = p + 1 - # E ( F p ) denote the trace of Frobenius at p . The Sato–Tate conjecture gives the limiting distribution μ ST of a E ( p ) / ( 2 p ) within [ - 1 , 1 ] . We establish bounded gaps for primes in the context of this distribution. More pr...
Gespeichert in:
Veröffentlicht in: | Research in number theory 2020, Vol.6 (1), Article 9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fix a non-CM elliptic curve
E
/
Q
, and let
a
E
(
p
)
=
p
+
1
-
#
E
(
F
p
)
denote the trace of Frobenius at
p
. The Sato–Tate conjecture gives the limiting distribution
μ
ST
of
a
E
(
p
)
/
(
2
p
)
within
[
-
1
,
1
]
. We establish bounded gaps for primes in the context of this distribution. More precisely, given an interval
I
⊆
[
-
1
,
1
]
, let
p
I
,
n
denote the
n
th prime such that
a
E
(
p
)
/
(
2
p
)
∈
I
. We show
lim inf
n
→
∞
(
p
I
,
n
+
m
-
p
I
,
n
)
<
∞
for all
m
≥
1
for “most” intervals, and in particular, for all
I
with
μ
ST
(
I
)
≥
0.36
. Furthermore, we prove a common generalization of our bounded gap result with the Green–Tao theorem. To obtain these results, we demonstrate a Bombieri–Vinogradov type theorem for Sato–Tate primes. |
---|---|
ISSN: | 2522-0160 2363-9555 |
DOI: | 10.1007/s40993-019-0184-8 |