Patterns of primes in the Sato–Tate conjecture

Fix a non-CM elliptic curve E / Q , and let a E ( p ) = p + 1 - # E ( F p ) denote the trace of Frobenius at p . The Sato–Tate conjecture gives the limiting distribution μ ST of a E ( p ) / ( 2 p ) within [ - 1 , 1 ] . We establish bounded gaps for primes in the context of this distribution. More pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in number theory 2020, Vol.6 (1), Article 9
Hauptverfasser: Gillman, Nate, Kural, Michael, Pascadi, Alexandru, Peng, Junyao, Sah, Ashwin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fix a non-CM elliptic curve E / Q , and let a E ( p ) = p + 1 - # E ( F p ) denote the trace of Frobenius at p . The Sato–Tate conjecture gives the limiting distribution μ ST of a E ( p ) / ( 2 p ) within [ - 1 , 1 ] . We establish bounded gaps for primes in the context of this distribution. More precisely, given an interval I ⊆ [ - 1 , 1 ] , let p I , n denote the n th prime such that a E ( p ) / ( 2 p ) ∈ I . We show lim inf n → ∞ ( p I , n + m - p I , n ) < ∞ for all m ≥ 1 for “most” intervals, and in particular, for all I with μ ST ( I ) ≥ 0.36 . Furthermore, we prove a common generalization of our bounded gap result with the Green–Tao theorem. To obtain these results, we demonstrate a Bombieri–Vinogradov type theorem for Sato–Tate primes.
ISSN:2522-0160
2363-9555
DOI:10.1007/s40993-019-0184-8