Cesàro Means and Convex-Cyclic Operators

We characterize when the Cesàro means of higher order for Banach spaces operators are hypercyclic. This is a useful tool to prove that an operator is convex-cyclic and it provides a large number of examples of convex-cyclic operators. A complex number λ is said to be an extended eigenvalue of a boun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2020-02, Vol.14 (1), Article 6
Hauptverfasser: Bensaid, Ikram Fatima Zohra, León-Saavedra, Fernando, de la Rosa, María del Pilar Romero
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We characterize when the Cesàro means of higher order for Banach spaces operators are hypercyclic. This is a useful tool to prove that an operator is convex-cyclic and it provides a large number of examples of convex-cyclic operators. A complex number λ is said to be an extended eigenvalue of a bounded linear operator T if there exists a non-zero bounded linear operator X such that T X = λ X T . We will discover some necessary conditions on the extended spectrum of an operator to be a convex-cyclic operator. These conditions do not guarantee non-supercyclicity.
ISSN:1661-8254
1661-8262
DOI:10.1007/s11785-019-00959-2