Cesàro Means and Convex-Cyclic Operators
We characterize when the Cesàro means of higher order for Banach spaces operators are hypercyclic. This is a useful tool to prove that an operator is convex-cyclic and it provides a large number of examples of convex-cyclic operators. A complex number λ is said to be an extended eigenvalue of a boun...
Gespeichert in:
Veröffentlicht in: | Complex analysis and operator theory 2020-02, Vol.14 (1), Article 6 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We characterize when the Cesàro means of higher order for Banach spaces operators are hypercyclic. This is a useful tool to prove that an operator is convex-cyclic and it provides a large number of examples of convex-cyclic operators. A complex number
λ
is said to be an extended eigenvalue of a bounded linear operator
T
if there exists a non-zero bounded linear operator
X
such that
T
X
=
λ
X
T
. We will discover some necessary conditions on the extended spectrum of an operator to be a convex-cyclic operator. These conditions do not guarantee non-supercyclicity. |
---|---|
ISSN: | 1661-8254 1661-8262 |
DOI: | 10.1007/s11785-019-00959-2 |