Extensions of Self-Improving Sorters
Ailon et al. (SIAM J Comput 40(2):350–375, 2011 ) proposed a self-improving sorter that tunes its performance to an unknown input distribution in a training phase. The input numbers x 1 , x 2 , … , x n come from a product distribution, that is, each x i is drawn independently from an arbitrary distr...
Gespeichert in:
Veröffentlicht in: | Algorithmica 2020, Vol.82 (1), p.88-106 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ailon et al. (SIAM J Comput 40(2):350–375,
2011
) proposed a self-improving sorter that tunes its performance to an unknown input distribution in a training phase. The input numbers
x
1
,
x
2
,
…
,
x
n
come from a product distribution, that is, each
x
i
is drawn independently from an arbitrary distribution
D
i
. We study two relaxations of this requirement. The first extension models hidden classes in the input. We consider the case that numbers in the same class are governed by linear functions of the same hidden random parameter. The second extension considers a hidden mixture of product distributions. |
---|---|
ISSN: | 0178-4617 1432-0541 |
DOI: | 10.1007/s00453-019-00604-6 |