Superconvergence of the Crouzeix-Raviart element for elliptic equation

In this paper, a superconvergence result of the Crouzeix-Raviart element method is derived for the second-order elliptic equation on the uniform triangular meshes, in which any two adjacent triangles form a parallelogram. A local weighted averaging post-processing algorithm for the numerical stress...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2019-12, Vol.45 (5-6), p.2833-2844
Hauptverfasser: Zhang, Yidan, Huang, Yunqing, Yi, Nianyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a superconvergence result of the Crouzeix-Raviart element method is derived for the second-order elliptic equation on the uniform triangular meshes, in which any two adjacent triangles form a parallelogram. A local weighted averaging post-processing algorithm for the numerical stress is presented. Based on the equivalence between the Crouzeix-Raviart element method and the lowest order Raviart-Thomas element method, we prove that the error between the exact stress and the postprocessed numerical stress is of order h 3/2 . Two numerical examples are presented to confirm the theoretical result.
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-019-09714-9