Superconvergence of the Crouzeix-Raviart element for elliptic equation
In this paper, a superconvergence result of the Crouzeix-Raviart element method is derived for the second-order elliptic equation on the uniform triangular meshes, in which any two adjacent triangles form a parallelogram. A local weighted averaging post-processing algorithm for the numerical stress...
Gespeichert in:
Veröffentlicht in: | Advances in computational mathematics 2019-12, Vol.45 (5-6), p.2833-2844 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a superconvergence result of the Crouzeix-Raviart element method is derived for the second-order elliptic equation on the uniform triangular meshes, in which any two adjacent triangles form a parallelogram. A local weighted averaging post-processing algorithm for the numerical stress is presented. Based on the equivalence between the Crouzeix-Raviart element method and the lowest order Raviart-Thomas element method, we prove that the error between the exact stress and the postprocessed numerical stress is of order
h
3/2
. Two numerical examples are presented to confirm the theoretical result. |
---|---|
ISSN: | 1019-7168 1572-9044 |
DOI: | 10.1007/s10444-019-09714-9 |