A subcritical approximation of the Paneitz problem on spheres
This paper is concerned with the following subcritical approximation of a fourth order conformal invariant (the Paneitz curvature) on spheres ( S ε ) : Δ 2 u - c n Δ u + d n u = K | u | 8 n - 4 - ε u , in S n , where n ≥ 5 , ε is a small positive parameter and K is a smooth positive function on S n...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2020, Vol.161 (1-2), p.93-108 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the following subcritical approximation of a fourth order conformal invariant (the Paneitz curvature) on spheres
(
S
ε
)
:
Δ
2
u
-
c
n
Δ
u
+
d
n
u
=
K
|
u
|
8
n
-
4
-
ε
u
, in
S
n
, where
n
≥
5
,
ε
is a small positive parameter and
K
is a smooth positive function on
S
n
. We construct some sign-changing solutions which blow up at two different critical points of
K
. Furthermore, we construct sign-changing solutions of
(
S
ε
)
having two bubbles and blowing up at the same critical point of
K
. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-018-1063-7 |